
© 1999-2024 AGG Software

The XML parser plugin

PRINTED MANUAL

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: 11/2/2024

XML parser plugin

© 1999-2024 AGG Software

Publisher

AGG Software

Production

© 1999-2024 AGG Software
http://www.aggsoft.com

IContents

© 1999-2024 AGG Software

Table of Contents

Part 1 Introduction 1

Part 2 System requirements 1

Part 3 Installing XML parser 1

Part 4 Glossary 2

Part 5 User Manual 3

... 31 Analyzing and parsing data

... 42 XML nodes

... 63 Characters translation

... 74 Filter

... 85 Syntax of Regular Expressions

... 136 Data format

Part 6 Troubles? 14

... 141 Possible problems

1 XML parser plugin

© 1999-2024 AGG Software

1 Introduction

This plugins allows to extract a XML data from data flow and parse XML nodes and attributes to
separate parser variable. These values will be exported as parser items and you can use their values
in data export plugins.

2 System requirements

The following requirements must be met for "XML parser" to be installed:

Operating system: Windows 2000 SP4 and above, including both x86 and x64 workstations and
servers. The latest service pack for the corresponding OS is required.

Free disk space: Not less than 5 MB of free disk space is recommended.

Special access requirements: You should log on as a user with Administrator rights in order to
install this module.

The main application (core) must be installed, for example, Advanced Serial Data Logger.

3 Installing XML parser

1. Close the main application (for example, Advanced Serial Data Logger) if it is running;
2. Copy the program to your hard drive;
3. Run the module installation file with a double click on the file name in Windows Explorer;
4. Follow the instructions of the installation software. Usually, it is enough just to click the "Next"

button several times;
5. Start the main application. The name of the module will appear on the "Modules" tab of the

"Settings" window if it is successfully installed.

If the module is compatible with the program, its name and version will be displayed in the module
list. You can see examples of installed modules on fig.1-2. Some types of modules require additional
configuration. To do it, just select a module from the list and click the "Setup" button next to the list.
The configuration of the module is described below.

You can see some types of modules on the "Log file" tab. To configure such a module, you should
select it from the "File type" list and click the "Advanced" button.

2Installing XML parser

© 1999-2024 AGG Software

Fig. 1. Example of installed module

4 Glossary

Main program - it is the main executable of the application, for example, Advanced Serial Data
Logger and asdlog.exe. It allows you to create several configurations with different settings and use
different plugins.

Plugin - it is the additional plugin module for the main program. The plugin module extends the
functionality of the main program.

Parser - it is the plugin module that processes the data flow, singling out data packets from it, and
then variables from data packets. These variables are used in data export modules after that.

Core - see "Main program."

3 XML parser plugin

© 1999-2024 AGG Software

5 User Manual

5.1 Analyzing and parsing data

To export the received data, you should configure the parser. The XML parser allows you to single
out XML nodes from the overall flow. You should define the rules the parser will use to process the
incoming data flow on the "XML data" tab (fig.1).

Fig.1. XML data.

Root node name – case insensitive name of the node that will contain all nodes for export. For
example: Response;

The plugin will extract from the overall flow a XML data like:

<Response end="#0A" parse="bp" timeout="500" validatesize="0">

<Item type="filter" size="-1" filtertype="1" exprtype="1" expr="----" />

<Item type="filter" size="-1" filtertype="2" exprtype="2" expr="^\d{2}\/
\d{2}\/\d{2} " />
</Response>

All nodes inside <Response> and </Response>, and all attributes of <Response> will be exported.

If the XML node doesn't contain a termination tag (</Response>), then this XML data will not be
extracted. For example, the following valid XML data will not be processed.

4User Manual

© 1999-2024 AGG Software

<Response end="#0A" parse="bp" timeout="500" validatesize="0">
....
</Response end="1">

<Response end="#0A" parse="bp" timeout="500" validatesize="0" />

Timeout – it may happen that the module will infinitely wait for the ending of some XML node. The
timeout value is used to prevent it. It defines the maximum interval the module can wait for a XML
node to end.

Export node values – if this option is selected, then the plugin will export node values like:
<Item>Value</Item>;

Export attribute values – if this option is selected, then the plugin will export values of all attributes
for every node.

Example: <Response end="#0A" parse="bp" timeout="500" validatesize="0">;

attributes end, parse, timeout, validatesize will be exported.

Add node name to attribute name – if this option is selected, then a name of a node will be
appended to an attribute name. For the example above, attributes end, parse, timeout,
validatesize will be exported with names Response.end, Response.parse, Response.timeout,
Response.validatesize. It allows to identify same attributes of different XML nodes.

Export names in upper case – if this option is selected, then names of all attributes and nodes will
be converted to upper case before exporting.

5.2 XML nodes

The "XML nodes" list (fig. 2) allows you to define a data type for your XML nodes and attributes. Also
you may specify to ignore some nodes and attributes. Click the "Add" button and add a new rule to
the list.

5 XML parser plugin

© 1999-2024 AGG Software

Fig.2. XML nodes.

Name - case insensitive name of an attribute or a node.

Type - the rule will be applied to All, Nodes or Attributes.

Action

· Ignore – the specified node or attribute will be ignored and will not be exported;
· Parse – the specified node or attribute will be parsed and exported.

Data types

· String - String value - Character array with length from 1 to 65535 characters;
· Memo - String value - Character array with length from 1 to 2 3̂2 characters;
· Bytes - Binary value;
· Blob - Binary Large Object field (bytes set);
· Boolean - Logical value (True/False) - 0 or 1;
· Float - Real number - value range: -2.9 x 10 -̂39 .. 1.7 x 10 3̂8
· Smallint - Signed small integer - value range: 32768..32767;
· Word - Word (unsigned small integer) - value range: 0..65535;
· Integer - Signed integer value: -2147483648..2147483647;
· Date - Date;
· Time - Time;
· DateTime - Date and time.

6User Manual

© 1999-2024 AGG Software

5.3 Characters translation

Character translation (fig.3) is used when you want to remove or replace some characters in a data
packet. For example, remove nonprinting ASCII characters.

Fig.3 Character translation

7 XML parser plugin

© 1999-2024 AGG Software

5.4 Filter

The filter is used to ignore some data packets that you do not want to export with the help of other
modules.

Fig. 2. Filtering rules

You should define one or several filtering rules. If some condition is true, the program does what is
specified in the "Action" field with the matching packet.

Action types

· Ignore – the current data packet will be ignored and will not be exported;
· Parse – the current data packet will be parsed and exported.

Several condition types can be specified in the "Status" field.

Rule status types

· Disabled – this rule is disabled and not used for filtering purposes;
· Contains – this rules checks whether the string/expression from the "Expression" field is present

in the data packet;
· Does not contain – this rule checks whether the string/expression from the "Expression" field is

absent in the data packet.

Expressions types – Expressions in the "Expression" field can be of 2 types:

· Text – the module will search the data packet for a string specified in the "Expression" field. The
search is case-sensitive.

· Regular expression – the module will use the regular expression specified in the "Expression"
field in its search. The search is case-sensitive.

8User Manual

© 1999-2024 AGG Software

5.5 Syntax of Regular Expressions

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to search for. Special
metacharacters allow you to specify, for instance, that a particular string you are looking for occurs
at the beginning or end of a line, or contains n recurrences of a certain character.

Regular expressions look ugly for novices, but they are a very simple, handy, and powerful tool.

Let's start our learning trip!

Simple matches

Any single character matches itself unless it is a metacharacter with a special meaning described
below.

A series of characters matches that series of characters in the target string, so the pattern "bluh"
would match "bluh'' in the target string. Quite simple, eh?

If you want to use metacharacters or escape sequences or literally, you need to 'escape' them by
the "\" backslash character. For instance, the " "̂ metacharacter matches the beginning of the string,
but "\ "̂ matches the " "̂ character and "\\" matches "\" and so on.

Examples:
 foobar matches the 'foobar' string.
 \^FooBarPtr matches '̂ FooBarPtr'.

Escape sequences

Characters may be specified using an escape sequence syntax, much like that used in C and Perl:
"\n'' matches a newline, "\t'' a tab, etc. More generally, \xnn, where nn is a string of hexadecimal
digits, matches the character whose ASCII value is nn. If you need wide (Unicode) character code,
you can use '\x{nnnn}', where 'nnnn' - one or more hexadecimal digits.

 \xnn char with hex code nn
 \x{nnnn} char with hex code nnnn (one byte for plain text and two bytes for Unicode)
 \t tab (HT/TAB), same as \x09
 \n newline (NL), same as \x0a
 \r car.return (CR), same as \x0d
 \f form feed (FF), same as \x0c
 \a alarm (bell) (BEL), same as \x07
 \e escape (ESC), same as \x1b

Examples:
 foo\x20bar matches 'foo bar' (note the space in the middle).
 \tfoobar matches 'foobar' preceded by the tab character.

9 XML parser plugin

© 1999-2024 AGG Software

Character classes

You can specify a character class by enclosing a list of characters in [], which will match any one
character from the list.

If the first character after the "['' is " '̂', the class matches any character not in the list.

Examples:
 foob[aeiou]r finds strings 'foobar', 'foober' etc. but not 'foobbr', 'foobcr' etc.
 foob[^aeiou]r find strings 'foobbr', 'foobcr' etc. but not 'foobar', 'foober' etc.

Within a list, the "-'' character is used to specify a range, so that a-z represents all characters
between "a'' and "z'', inclusive.

If you want "-'' itself to be a member of a class, put it at the start or end of the list, or escape it with a
backslash. If you want ']' you may place it at the start of the list or escape it with a backslash.

Examples:
 [-az] matches 'a', 'z' and '-'
 [az-] matches 'a', 'z' and '-'
 [a\-z] matches 'a', 'z' and '-'
 [a-z] matches all twenty six small characters from 'a' to 'z'
 [\n-\x0D] matches any of #10,#11,#12,#13.
 [\d-t] matches any digit, '-' or 't'.
 []-a] matches any char from ']'..'a'.

Metacharacters

Metacharacters are special characters which are the essence of Regular Expressions. There are
different types of metacharacters, described below.

Metacharacters - line separators

 ^ start of a line
 $ end of a line
 \A start of a text
 \Z end of a text
 . any character in a line

Examples:
 ^foobar matches the 'foobar' string only if it's at the beginning of a line
 foobar$ matches the 'foobar' string only if it's at the end of a line
 ^foobar$ matches the 'foobar' string only if it's the only string in a line
 foob.r matches strings like 'foobar', 'foobbr', 'foob1r' and so on

By default, the " "̂ metacharacter is only guaranteed to match at the beginning of the input
string/text, the "$" metacharacter only at the end. Embedded line separators will not be matched by
" '̂' or "$''.

10User Manual

© 1999-2024 AGG Software

You may, however, wish to treat a string as a multi-line buffer, such that the " '̂' will match after any
line separator within the string, and "$'' will match before any line separator.

The ".'' metacharacter by default matches any character.

Note that " .̂*$" (an empty line pattern) does not match the empty string within the sequence
\x0D\x0A, but matches the empty string within the sequence \x0A\x0D.

Metacharacters - predefined classes

 \w an alphanumeric character (including "_")
 \W a non-alphanumeric
 \d a numeric character
 \D a non-numeric
 \s any space (same as [\t\n\r\f])
 \S a non space

You may use \w, \d, and \s within custom character classes.

Examples:
 foob\dr matches strings like 'foob1r', ''foob6r' and so on but not 'foobar', 'foobbr' and so on
 foob[\w\s]r matches strings like 'foobar', 'foob r', 'foobbr' and so on but not 'foob1r', 'foob=r'
and so on

Metacharacters - iterators

Any item of a regular expression may be followed by another type of metacharacters - iterators.
Using this type of metacharacters, you can specify the number of occurrences of the previous
character, metacharacter, or sub-expression.

 * zero or more ("greedy"), similar to {0,}

 + one or more ("greedy"), similar to {1,}

 ? zero or one ("greedy"), similar to {0,1}

 {n} exactly n times
 {n,} at least n times ("greedy")
 {n,m} at least n but not more than m times ("greedy")
 *? zero or more ("non-greedy"), similar to {0,}?
 +? one or more ("non-greedy"), similar to {1,}?
 ?? zero or one ("non-greedy"), similar to {0,1}?
 {n,}? at least n times ("non-greedy")
 {n,m}? at least n but not more than m times ("non-greedy")

So, digits in curly brackets of the form {n,m}, specify the minimum number of times to match the
item n and the maximum m. The form {n} is equivalent to {n,n} and matches exactly n times. The
form {n,} matches n or more times. There is no limit to the size of n or m, but large numbers will
chew up more memory and slow down an execution time of a regular expression.

If a curly bracket occurs in any other context, it is treated as a regular character.

Examples:
 foob.*r matches strings like 'foobar', 'foobalk jdflk j9r' and 'foobr'
 foob.+r matches strings like 'foobar', 'foobalk jdflk j9r', but not 'foobr'

11 XML parser plugin

© 1999-2024 AGG Software

 foob.?r matches strings like 'foobar', 'foobbr' and 'foobr', but not 'foobalk j9r'
 fooba{2}r matches the string 'foobaar'
 fooba{2,}r matches strings like 'foobaar', 'foobaaar', 'foobaaaar' etc.
 fooba{2,3}r matches strings like 'foobaar', or 'foobaaar', but not 'foobaaaar'

A little explanation about "greediness". "Greedy" takes as many as possible, "non-greedy" takes as
few as possible. For example, 'b+' and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+?' returns 'b',
'b*?' returns empty string, 'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.

Metacharacters - alternatives

You can specify a series of alternatives for a pattern using "|'' to separate them, so that fee|fie|foe
will match any of "fee'', "fie'', or "foe'' in the target string (as would f(e|i|o)e). The first alternative
includes everything from the last pattern delimiter ("('', "['', or the beginning of the pattern) up to the
first "|'', and the last alternative contains everything from the last "|'' to the next pattern delimiter. For
this reason, it's common practice to include alternatives in parentheses, to minimize confusion about
where they start and end.
Alternatives are tried from left to right, so the first alternative found for which the entire expression
matches, is the one that is chosen. This means that alternatives are not necessarily greedy. For
example: when matching foo|foot against "barefoot'', only the "foo'' part will match, as that is the first
alternative tried, and it successfully matches the target string. (This might not seem important, but it
is important when you are capturing matched text using parentheses.)
Also remember that "|'' is interpreted as a literal within square brackets, so if you write [fee|fie|foe],
you're really only matching [feio|].

Examples:
 foo(bar|foo) matches strings 'foobar' or 'foofoo'.

Metacharacters - subexpressions

The bracketing construct (...) may also be used to define a sub-expressions of the regular
expression.

Sub-expressions are numbered based on the left to right order of their opening parenthesis. The first
sub-expression has the number '1'.

Examples:
 (foobar){8,10} matches strings which contain 8, 9 or 10 instances of 'foobar'
 foob([0-9]|a+)r matches 'foob0r', 'foob1r' , 'foobar', 'foobaar', 'foobaar', etc.

Metacharacters - backreferences

Metacharacters \1 through \9 are interpreted as backreferences. \<n> matches previously matched
subexpression #<n>.

Examples:
 (.)\1+ matches 'aaaa' and 'cc'.
 (.+)\1+ also matches 'abab' and '123123'

 ([' "] ?) (\ d+) \ 1 matches '"13" (in double quotes), or '4' (in single quotes) or 77 (without

quotes) etc

12User Manual

© 1999-2024 AGG Software

Modifiers

Modifiers are used for changing the behaviour of the parser.

There are many ways to set up modifiers.
These modifiers may be embedded within the regular expression itself using the (?...) construct.

i
Do case-insensitive pattern matching (using installed in your system locale settings).

m
Treat string as multiple lines that change " '̂' and "$'' from matching at only the very start or end of
the string to the start or end of any line anywhere within the string.

s
Treat string as a single line that change ".'' to match any character whatsoever, even a line
separators, which it normally would not match.

g
Non-standard modifier. It switches off all following operators into non-greedy mode (by default this
modifier is On). So, if modifier /g is Off then '+' works as '+?', '*' as '*?' and so on.

x
Extend your pattern's legibility by permitting white-space and comments (see explanation below).

The modifier /x itself needs a little more explanation. It tells the parser to ignore whitespace that is
neither backslashed nor within a character class. You can use this to break up your regular
expression into (slightly) more readable parts. The # character is also treated as a metacharacter
introducing a comment, for example:

(

(abc) # comment 1

 | # You can use spaces to format a regular expression. - parser ignores it

(efg) # comment 2

)

It also means that if you want real whitespace or # characters in the pattern (outside a character
class, where they are unaffected by /x), that you'll either have to escape them or encode them using
octal or hex escapes. These features go a long way towards making regular expressions text more
readable.

How to change modifiers

(?imsxr-imsxr)

You may use it in a regular expression to change modifiers on-the-fly. If this construction is inlined
into subexpression, it affects only into this subexpression.

Examples:
 (?i)New-York matches 'New-york ' and 'New-York '
 (?i)New-(?-i)York matches 'New-York ' but not 'New-york '
 (?i)(New-)?York matches 'New-york ' and 'new-york '
 ((?i)New-)?York matches 'New-York ', but not 'new-york

(?#text)

13 XML parser plugin

© 1999-2024 AGG Software

It is a comment. The text inside brackets will be ignored. Note that the parser closes the comment
as soon as it sees the ")" character, so there is no way to put a literal ")" in the comment.

5.6 Data format

You can use the following tab to specify the data format for some data types (see figure below).

Fig. 3. Data format

Text data format – this group of options allows you to remove leading or trailing spaces in variables
of the String type.

Date and time format – it often happens that the date or time format the external device sends
does not coincide with the format in which this data is stored in the database. To convert a date into
the necessary format, you should specify the format of the received date and time.

The same format is used to specify the date and time as the one that is used in the name of the log
file in the main program (for example, Advanced Serial Data Logger). So please read about it in the
help file of the main program. Note: the "/" and ":" characters are enclosed in quotation marks in the
template (see figure above).

If some part is missing in the received date and time (for example, year), you can take the missing
part from the current date and time:

Use the current date for missing parts;

14User Manual

© 1999-2024 AGG Software

Use the current time for missing parts;

Sometimes devices send dates with month names (for example, "Jan 10, 2024"), and this name can
be in a language (in this example, it is in English) different from the language of your operating
system. The language ID a date is sent in is specified in the "Date language ID" field in this case.

6 Troubles?

6.1 Possible problems

No data for publication/exporting - no data is passed for export. Solution: configure the parser
and make sure that one or more variables are defined in the parser.

Error on binding variable with name %s [%s] - the error usually occurs if data does not
correspond to the specified format. For example, the date and time format does not match source
data.

Unable to disconnect from the database [%s] and Unable to connect to a database [%s] - it is
impossible to connect or disconnect form the database. You should check the parameters of the
database connection. The analysis of the additional information will help you locate the error.

Database access error [%s]. Stop operations with the database? - the message appears if an error
occurs during an attempt to execute an SQL query if the second variant of reacting to errors is
selected. The message implies the "Yes" or "No" answer. The analysis of the additional information
will help you locate the error.

Unable to verify your SQL script [%s] - the message appears when an attempt to analyze your
SQL query fails. Check if the syntax of your SQL query is correct.

Tested successfully - the message appears if your database connection is successfully tested. It
requires no additional actions.

Database isn't used - the message appears if the module is temporarily disabled (the "Temporarily
disabled" check box is selected) or the database name field is empty. Check the connection
parameters.

Database isn't selected - the message appears if the database type is not selected. Check the
connection parameters.

Database: %s - %s contains the database name. The message appears if the database connection
is successful. Usually, you see it when you call the module for the first time. It requires no additional
actions.

Invalid data block length (columns=%d,length=%d) - an internal application error. It means that
the data sent by the parser is in an invalid format. Perhaps, you are using the module incompatible
with the version of the Advanced Serial Data Logger kernel. Update the versions of both the kernel
and the module.

15 XML parser plugin

© 1999-2024 AGG Software

The time of connection is not due yet (%d,%d) - the message appears during an attempt to
connect to the database after the connection to it has been lost and the "Reconnect after" option is
enabled. No additional actions are required.

Invalid procedure call. Bad arguments - an attempt to call the module using invalid parameters.
Perhaps, you are using the module incompatible with the version of the Advanced Serial Data Logger
kernel. Update the versions of both the kernel and the module.

Writing to the database is complete - the message appears if your queue of SQL queries is
successfully executed. It requires no additional actions.

Writing to the database is complete with errors - the message appears if the execution of your
queue of SQL queries was interrupted by an error. It requires no additional actions.

Your SQL is empty. Please, specify some SQL text first - the message appears if you do not
enter the text for your SQL query. Check if the options on the "SQL queue" tab are configured
correctly.

Invalid temporary path - the path to the temporary file specified by you does not exist. Enter a
new path in the "Temporary folder" field on the "Errors handling" tab.

%s, %d - will be replaced by additional information.

	Introduction
	System requirements
	Installing XML parser
	Glossary
	User Manual
	Analyzing and parsing data
	XML nodes
	Characters translation
	Filter
	Syntax of Regular Expressions
	Data format

	Troubles?
	Possible problems

