Advanced PBX Data Logger

© 1999-2016 AGG Software

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Publisher
AGG Software

Production
© 1999-2016 AGG Software
http://www.aggsoft.com
Table of Contents

Part 1 Introduction
1. About Advanced PBX Data Logger ... 1
2. Glossary ... 2

Part 2 License, Registration and technical support
1. License ... 3
2. Limitations ... 4
3. How to register .. 4
4. Support ... 5

Part 3 Installation
1. System requirements .. 5
2. Installation process ... 5

Part 4 Program use
1. Getting started ... 5
2. Introduction ... 7
3. Data flow diagram .. 9
4. Work complete ... 10
5. Useful advices ... 10
6. Configuration .. 11
 - Serial port ... 11
 - Serial (COM) port .. 11
 - Network connection .. 16
 - TCP/IP settings .. 16
 - File settings ... 24
 - File data source .. 24
 - Folders settings .. 26
 - Files settings .. 28
 - Schedule .. 30
 - TAPI ... 31
 - Selecting TAPI devices ... 31
 - Samples ... 32
 - Additional parameters ... 33
 - Data view change .. 33
 - Date/time configuration .. 34
 - Name and security .. 35
 - Log files .. 37
 - Log rotation .. 37
 - Log file access ... 39
 - Log deletion .. 40

© 1999-2016 AGG Software
Part 5 Serial communications overview

1. RS-232 .. 0
2. DB9 (9 pin) RS-232 port pinout 0
3. DB25 (25 pin) RS-232 port pinout 0
4. RS-232 loopback devices 0
5. RS-232 data transfer cables 0

Part 6 Having problems?

1. Program doesn’t run or work 78
2. FAQ .. 79
1 Introduction

1.1 About Advanced PBX Data Logger

The Private Branch eXchange (also called PBX or Private Business Exchange) is a telephone switching center that is owned by a private business, compared to one that is owned by the common carrier or telephone company. In Europe, the term PABX (Private Automatic Branch eXchange) is often used. The call records from the PBX are called SMDR, CDR, or CIL. Most PBX offers the following interfaces for collecting data from the PBX:

- Serial interface - historically used to print every call record to a serial printer. Now our software can capture data from this port.
- Network Port (Listen mode) - where Advanced PBX Data Logger connects to the TCP or UDP port. The PBX then starts streaming information down to the application.
- Network Port (Server mode) - The PBX connects to Advanced PBX Data Logger.

Advanced PBX Data Logger enables users to record, track and archive phone calls and can capture SMDR or CIR data from RS232, RS845, TCP or UDP ports, custom processes it to your needs, then extracts variables with the data from data packets and transfers the data to a text or binary file, database, DDE, OPC.

Key features of Advanced PBX Data Logger is:

- Capability to log data from multiple PBX at the same time. Our data logger can collect data from multiple PBX simultaneously. Each PBX may have fully different settings;
- Universal. Supports more than 50 PBX types and allows to create custom configuration;
- Variable data receive. Captures CDR and SMDR data from PBX;
- Extended logging features. Outputs received data without any changes to a log file. Supports date/time stamping and logs rotation;
- Visualization. The program allows to display all received data in the program window. You can customize data view options;
- Advanced data parser. Allows you to create a custom configurations for PBXs that are not defined by default;
- Filtering. You may define simple rules or use powerful regular expressions;
- MS Excel. Data export to ready-to-use MS Excel files;
- Databases support. Exporting data to MSSQL, MySQL, ODBC-compatible database (MS SQL, Oracle, MS Access, dBase and others);
- Real-time export capabilities. Advanced PBX Data Logger can run as DDE or OPC server and can public all received data;
- Program message logging. Writing to a protocol file all program messages, so you may diagnose errors and warning;
- Plug-ins. Many plug-in modules that extending program features;
- Simple, menu-driven step by step set-up Programming is not required to configure the software to collect data;
- Supporting various operating systems. It runs under all versions starting from Windows 2000, including 32 and 64-bit systems;
- Windows service mode. Unlike most other serial logging applications, Advanced PBX Data Logger can run as a service so that it starts as soon as the operating system starts and doesn't require a user to log in and run it. It will continue to run even as users logon and logoff the workstation.

It is extremely easy to use! The configuration process is fully menu driven and has complete,
context sensitive, on-line help. you can easily customize all input to your exact specifications. Once you see how easy it is to use Advanced PBX Data Logger, you will never again take data readings by hand!

Company home page: http://www.aggsoft.com/
Serial port hardware reference: http://www.aggsoft.com/rs232-pinout-cable/

1.2 Glossary

ASCII - An acronym for American Standard Code for Information Interchange. ASCII files are plain, unformatted text files that are understood by virtually any computer. Windows Notepad and virtually any word processor can read and create ASCII files. ASCII files usually have the extension .TXT (e.g., README.TXT).

Binary File - A file that contains data or program instructions written in ASCII and extended ASCII characters.

Bit - Binary digit in the binary numbering system. Its value can be 0 or 1. In an 8-bit character scheme, it takes 8 bits to make a byte (character) of data.

Bytes - A collection of eight bits that represent a character, letter or punctuation mark.

Cable - Transmission medium of copper wire or optical fiber wrapped in a protective cover.

CDR – Call detail record.

Client/Server - A networking system in which one or more file servers (Server) provide services; such as network management, application and centralized data storage for workstations (Clients).

PC - abbreviation for a Personal Computer.

Ports - A connection point for a cable.

Protocol - A formal description of a set of rules and conventions that govern how devices on a network exchange information.

SMDR – Station Messaging Detail Record, a way to record telecommunications system activity, also known as Call detail record or CDR.
2 License, Registration and technical support

2.1 License

Copyright © 1999-2016 AGG Software.
All Rights Reserved

SOFTWARE LICENSE

Trial Limited Version

The trial limited version of this software may be used for evaluation purposes at the user's own risk for a trial period. At the end of the trial period, the user must either purchase a license to continue using the software, or remove it from his/her system.

The trial limited version may be freely distributed, provided the distribution package is not modified. No person or company may charge a fee for the distribution of Advanced PBX Data Logger without written permission from the copyright holder.

Licensed Version

On payment of the appropriate license fee, the user is granted a non-exclusive license to use Advanced PBX Data Logger on one computer (i.e. a single CPU), for any legal purpose, at a time. The registered software may not be rented or leased, but may be permanently transferred, if the person receiving it agrees to terms of this license. If the software is an update, the transfer must include the update and all previous versions.

Registered customer are entitled to free updates during one year from the date of purchase. It means that during one year you can download and install the latest registered versions of Advanced PBX Data Logger from our site. If you don't want to purchase an updates, you can use the program forever; it will never expire, but you won't be able to use the latest version. If you purchased the software more than one year ago, you are no longer entitled to free upgrade and technical support; however, you can purchase an updates to the latest version at a special, greatly discounted price, and this updates will allow you to have free updates and technical support for another year. The type of update license must match the type of your existing license.

Whilst every care has been taken in the construction and testing of this software, it is supplied subject to the condition that the user undertakes to evaluate the suitability of the control for his/her purposes. AGG Software makes no representation of the software's suitability for any purpose, and the user agrees that AGG Software has no responsibility for any loss or damage occasioned by the use of this software.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" AND AGG SOFTWARE DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, CONFORMANCE WITH DESCRIPTION, TITLE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
2.2 Limitations

Program is distributed on shareware terms. This means limited and unavailable secondary program possibilities, which become valuable or available after program registration. To register the program read here.

In trial version of our program are the following limits:

- Trial period is limited by 21 days. After that time program won't work until it is registered.
- Continuous program work time is limited. After set period a message will be displayed and program stops its work;
- All data export modules can handle first 100 records only;

2.3 How to register

The program is distributed on shareware terms. This signifies limited or unavailable many features of the program, getting of full value or available after program registration.

If you'd like to be a registered user, to get information about the release of new versions, to use technical support and, at last, to get access to disabled functions of the program, register your copy. For registration, please, read license agreement.

If you want to buy a program through the Internet visit the registration page of our site. On this page you can get the newest information about the registration process, and also find an order link. After you've have the form of order registration. Enter your personal information and choose the most convenient payment method for you. Further, you'll get notification and follow the notes in it.

More information about services, registration documents, payment means you can get on our registration page of our site.
2.4 Support

<table>
<thead>
<tr>
<th>Technical questions</th>
<th>support@aggsoft.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common questions</td>
<td>info@aggsoft.com</td>
</tr>
<tr>
<td>Sales questions</td>
<td>sales@aggsoft.com</td>
</tr>
</tbody>
</table>

3 Installation

3.1 System requirements

Windows 2000 Professional - Windows 8.1, including x64 and x86 OS, Workstation and Server OS.

3.2 Installation process

If any beta-version was installed on your computer, remove it.

Quit of the working Advanced PBX Data Logger on installation time.

Run an installation file.

By default, Advanced PBX Data Logger will be installed to the directory "Program Files/Advanced PBX Data Logger" of your system disk, but you can change this path.

In the standard distributive of Advanced PBX Data Logger are no additional modules files, which you can download from our site.

4 Program use

4.1 Getting started

After you have successfully installed Advanced PBX Data Logger, use the following simple steps to configure and run it.

Open the Advanced PBX Data Logger program from the Start Menu.

At program run you get into the main program window (fig. 1.1.1), main elements of which are the
main menu, the data window, the program messages list and the status bar. In the data window will be viewed formatted data processing. In the messages list are logged information, warning and error messages. The status bar shows current state of the selected data source, interface error messages and a number of bytes processed. Through the main menu, placed above the data window, you can get access to program settings (Options/Program settings...) and from the menu "File" (fig. 1.1.2) can open an current log-file or clean the data window.

By default (after installation), the program has not any data sources configured. If the list of data sources on the toolbar is empty, then the program will ask you to add new configuration. Otherwise, the program will fill in the list of data sources and try to start logging of data sources configured.

Yes, of course, all your settings are being saved while exiting from the program and loaded while the program start.

Set-Up is as Easy as 1-2-3

Step 1. Configure one or more data sources.

Click the "Add configuration" button on the toolbar with big green plus and choose communication.
The "COM Port settings" "IP settings" tab of the "Configuration options" dialog lets you configure your settings.

Step 2. Configure log file.

Select the "Log file" header in the configuration dialog window and enable logging for a necessary data direction.

Step 3. Define how you want the PBX or PABX data to be parsed and translated.

The "Plug-in" button on the toolbar in the main window or "Modules" tab in the dialog window lets you specify how to parse, filter and format your data to fit the exact format required by your application. It also lets you pre-define automatic output strings to be sent to an external device.

Now, the program processes and exports data from one or multiple data sources.

4.2 Introduction

Program can work with any kind of serial devices. Before configuring our software, the following conditions should be executed:

- Device should have a RS-232 serial port interface (can be also used a RS-485 interface with an additional hardware converter);
- Device is configured to send data to serial port with or without requests from a PC side;
- You know all information about serial port parameters of your device (If your device uses hardware or software flow control (please, read your device's data sheet), then you should know about flow control type);
- Device's serial port is connected with computer serial port with a cable (null-modem or other special cable);
- Computer's COM port, to which your device is connected is not busy, for example by mouse software driver.

How to configure port parameters, you can read in the next chapter "Serial port settings".

Program can work with any kind of network interface cards (NIC). Before configuring our software, the following conditions should be executed:

- If your PC has more than one network interface card (NIC) then Advanced PBX Data Logger will display a list of all the IP addresses for each NIC installed in your system so that you can select the IP Address that you want to use. In order for Advanced PBX Data Logger to act as a server, the PC that it is running on must have at least one network interface card with an IP address assigned to it;
- If Advanced PBX Data Logger will work as a server and your PC receives the IP address dynamically from a DHCP server, then you should ask your network administrator to assign a static IP address to your PC.

How to configure port parameters, you can read in the next chapter "IP settings".

Advanced PBX Data Logger can save data to a log file(s) without any changes (i.e. create raw binary
log files) or write to log files depending on the parser module selected. In the first case you can view
the log file with any hex editor and use this data for further analysis and remaking. In the second
case you can view data with any text editor. You can find more information about log files in the "Log
rotation" chapter.

You can watch the data in the data window (fig. 1.1.1). The data view is fully customizable. You
can watch data in decimal, hexadecimal or your own format. How to customize data view you can
read in the "Data view" chapter and how to customize program view you can read in the "Window
view" chapter.

The data can be exported or transferred to one or more targets. Most simple way is to configure the
log file rotation. But it is small part of all features of Advanced PBX Data Logger. Advanced PBX Data
Logger has many additional modules (so-called plug-ins), that are appreciably extending
possibilities of the logging software. You can download and install any module supported. Most
modules are free of charge for our customers. How to install and configure modules you can read in
the "Modules" chapter.

The program and their plug-ins generates many messages and writes they to the list in the main
window (fig. 1.1.1) and a protocol file, that you can use for administration of the software. You
can configure types of system messages. More information about it you can read in the "Protocol
and errors handling" chapter.
4.3 Data flow diagram

This diagram may help you to understand the flow of data within our software and a place of each module. All modules are described in following chapters.

History:

- Binary flow of data (RAW, unformatted data).

-Parsed data (formatted data). The data flow was been separated to data packets and variables. Each data packet can be interpreted as a row, and each variable can be interpreted as a column.

Wires with other colors mark other relations with unstructured data flow.
4.4 Work complete

After program work stop all program settings will be saved in Windows registry. Opened for reading/writing data sources will be automatically closed and will be available for other applications.

4.5 Useful advices

1. Look through hint helps on all window elements - this will help you to get a picture of this element's function.

2. You can change all program settings without restarting the program. To transfer settings to another computer you can do the following:

 1. Create a configuration backup from the "File" menu and restore it using the same menu.
 2. Or export the registry node with all program settings. Start regedit.exe and export the following registry node:

 on Windows x64
 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\AGG Software\Advanced PBX Data Logger

 on Windows x32
 HKEY_LOCAL_MACHINE\SOFTWARE\AGG Software\Advanced PBX Data Logger

 3. On another computer import settings to the Windows registry.

Many main window elements have "hot" keys for quick access to its functions.

- Ctrl+S - analogues to click on "Start/Pause" button on toolbar.
- Ctrl+C - analogues to click on "Clear" button on toolbar.
- Ctrl+P - call options window with configuration settings.
- Ctrl+L - call options window with log file settings.
- With Ctrl+W hot key You can configure window view.
- Ctrl+R - show window with program’s restart settings.
- Ctrl+E - Windows NT/2000/XP service settings is available here.
- Ctrl+M - here you can configure queries, parsers and other modules.

4. You can look at the summary statistic that contains summary about sent and received data, created files etc (View - Statistics)

5. You can save program settings to an INI file. It may help to install and use several copies of the program. You can make your choice from the "Options" menu.

6. The program window can display only last 10 message. The full program log file (if activated) you can open using the "File - View program protocol file" menu item.
4.6 Configuration

4.6.1 Serial port

4.6.1.1 Serial (COM) port

COM port is short for a serial communication port. Most serial communication software communicate with a computer through a communication port, and most IBM and IBM-compatible computers support up to four serial ports COM1, COM2, COM3 and COM4. Additional ports can be added by adding additional hardware.

Advanced PBX Data Logger can manipulate with many serial ports in the same time (up to 255 serial ports).

You can open serial ports in Advanced PBX Data Logger software in two modes:

1. **Spy mode.** In this mode the program monitor data flow on ports selected. In this mode Advanced PBX Data Logger intercept all data exchange between any Windows application and external device;
2. **Standard.** In this mode the program opens a serial port through Windows API functions, and read/write data from/to a serial port as a regular Windows application. In this mode opens a serial port with exclusive rights and other application will not have access to a serial port.

If one or more port are configured already, then Advanced PBX Data Logger is opening these ports and starting logging. If the port is opened successful, then the status bar in the main window displays a status of this port (fig. 1.1.1). But, before you should configure serial port parameters. For minimization of configuration we combined serial ports with same settings to the "Configuration". The configuration can include one or more serial ports with **identical** settings. For example, if you have many identical devices, that connected to different serial ports, then you can specify port numbers in one configuration only. But, if you want to use serial port with different settings, then you should create more than one configurations.

You can create the new configuration by clicking the "Plus" button in the main window (fig. 1.1.1) or through the "Options" menu. After you clicked the "Plus" button, the dialog window will be opened (fig. 2.1.2). The dialog window contains few sections with parameters. The “COM port” section is described in this chapter.

You can manage the configuration created with a drop down menu near the "Plus" button (fig. 2.1.1).
The "COM port settings" tab contains indispensable settings of any serial port: baud rate, data bits, etc. You should configure it with same values, that your external device uses for data exchange.

If you are logging data over RS-485 with an additional hardware converter and your converter doesn't support data direction auto detection, then specify "RS485 interface mode". This option instructs Advanced PBX Data Logger to set the RTS line at low level while data receiving and vice versa. The serial port driver can detect errors while data receiving (for example, bad quality of a connection line). You can specify with the "At data receive error clean incoming buffer" option to ignore data blocks, that contain errors and clean an incoming buffer.

In some cases the program can't open a serial port while starting (for example, the port is already used by other application). With the "Try to open after an unsuccessful attempt" option you can specify to try to open the serial port again after the interval specified. The program will try to open the serial port until an attempt will successful.

Check line status mode

The Windows communication API provides two methods to check for received data and line/modem status changes: API calls (polling) and an event word. The event word is maintained by the Windows
communications driver. As data is received or line/modem status changes occur, the driver sets bits in the event word. The application can check the bits to determine if any communication events occurred. If so, the application can make the appropriate API call to clear the event word and retrieve the data or the new line/modem status values.

Windows also provides API calls to retrieve the same status information provided by the event word but the API calls are slower. Advanced PBX Data Logger uses the event word by default for the fastest possible performance. Unfortunately, there is at least one communication driver (WRPL.DRV, included with some U.S. Robotics modems) that doesn't appear to support the event word. For this and similar drivers, select other mode before Advanced PBX Data Logger will receive data.

To rise data transmit adequacy you can use hardware and/or software data flow control (fig. 2.1.3). When using hardware data flow control are used some lines (wires) of connecting cable. Depending on used lines, you must setup checks against corresponding fields.

Hardware flow control

When the hardware flow control options are an empty, as they are by default, there is no hardware flow control. The options can be combined to enable hardware flow control.

"Receive flow control" stops a remote device from transmitting while the local input buffer is too full. "Transmit flow control" stops the local device from transmitting while the remote input buffer is too full.

Receive flow control is enabled by including the "Use RTS" and/or "Use DTR" elements in the options. When enabled, the corresponding modem control signals (RTS and/or DTR) are lowered when the input buffer reaches the 90% size of the buffer. The remote must recognize these signals and stop sending data while they are held low.

As the application processes received characters, buffer usage eventually drops below the 10% size of the buffer. At that point, the corresponding modem control signals are raised again. The remote must recognize these signals and start sending data again.

Transmit flow control is enabled by including the "Require CTS" and/or "Require DSR" elements in the options. With one or both of these options enabled, the Windows communications driver doesn’t transmit data unless the remote device is providing the corresponding modem status signal (CTS and/or DSR). The remote must raise and lower these signals when needed to control the flow of transmitted characters.

Note that flow control using RTS and CTS is much more common than flow control using DTR and DSR.

Software flow control

This routine turns on one or both aspects of automatic software flow control based on the value assigned to the property.

"Receive flow control" stops a remote device from transmitting while the local receive buffer is too full. "Transmit flow control" stops the local device from transmitting while the remote receive buffer is too full.

Receive flow control is enabled by assigning "On receiving" or "Both" to the "Type" property.
enabled, an XOff character is sent when the input buffer reaches the level 10% size of the buffer. The remote must recognize this character and stop sending data after it is received.

As the application processes received characters, buffer usage eventually drops below the level 10% of the buffer. At that point, an XOn character is sent. The remote must recognize this character and start sending data again.

Transmit flow control is enabled by assigning "On transmitting" or "Both" to the "Type" property. The 10% and 90% size of the buffer are not used in this case. When transmit flow control is enabled, the communications driver stops transmitting whenever it receives an XOff character. The driver does not start transmitting again until it receives an XOn character or the user sets software flow control to 'None'.

Software data flow control can be setup on receive, transmit or both modes, but so as the great number of device doesn't need data sending, select only control mode "On receive". In case of activation of data transmit control remote object (in our case your device) can send special codes, signaling about data transmit stop or start. On default, received from device character 0x11 Hex signalizes to COM port driver to start data receive and character 0x13 Hex - to stop data receive from device.

![Data flow control configuration options](image)

Spy mode
In this mode Advanced PBX Data Logger doesn’t send and receive any data, and only spies data exchange, made by other programs.
To spy received and sent data open COM port before running the given program. If the given program receives data over COM port, the data exchange process will be displayed in data receive window. Don’t forget to set up check box “Spy mode” to spy data receive by the given program (if necessary).

To exit Advanced PBX Data Logger close the given program or stop data exchange over COM port in it.

You must close, which data exchange you spies, before closing Advanced PBX Data Logger.

Serial data transfer errors

Line errors can occur during data exchange and displayed in the main program window in the status bar.

- UART receiver parity error - occurs if you configured invalid parity type;
- UART receiver overrun,
- UART receiver framing error - occurs if you configured invalid number of stop or data bits;
- transmit timeout waiting for CTS,
- transmit timeout waiting for DSR,
- transmit timeout waiting for RLSD - occurs if you configured invalid hardware flow control or your serial interface cable isn’t wired for hardware flow control
- transmit queue is full - occurs if Advanced PBX Data Logger can’t send data to remote device;
- break condition received

Port restart

You can also set the program to initiate the serial interface at the specified time. On some old versions of the Windows NT operating system it could help to avoid the loss of data when the program has been working for a long time without restarting. Please use the “Additional options” tab (fig. 2.1.4)
Here you can also select the terminal emulation mode. In this mode the program will remove or interpret some special terminal sequences automatically.

4.6.2 Network connection

4.6.2.1 TCP/IP settings

UDP vs. TCP

The most commonly used network protocols today are TCP (Transport Control Protocol) and UDP (User Datagram Protocol). TCP is a proven and reliable protocol, and probably the most widely implemented protocol in use on IP networks today. However, TCP has a lot of overhead and payload issues, and can sometimes be ‘too-reliable’ or robust for many applications. In fact, when used as transport, for many serial based applications TCP can actually hinder reliable communications. In contrast, UDP is a much simpler protocol, and is being used more frequently today – particularly in areas where bandwidth or throughput is constrained. An example is the predominant use of UDP for transport of wireless data applications.

UDP is first a connectionless protocol. Like TCP, UDP runs on top of IP networks. But unlike TCP, UDP does little to help with transport delivery or error recovery. Instead it offers a direct way to send...
and receive packets, letting the software application manage things like error recovery and data retransmission. Once primarily used for broadcasting small messages, UDP is now used for everything from browsers to Instant Messaging, Video, and Voice over IP applications.

While a powerful tool, the downside to using UDP is that there is not ‘connection’ report to know that you have end-to-end connectivity. This often makes detecting whether or not a packet is ‘making it’ from one place to another quite a hassle.

Client vs Server

Advanced PBX Data Logger can be configured to log data from as many ports that you like simultaneously on a single PC. The program uses a multi configurations. Each configuration may contain different settings for each TCP/IP port. Each configuration has a set of TCP/IP parameters that are described below.

Each port configuration (i.e. TCP/IP connection) in Advanced PBX Data Logger can act as:

1. **Client.** You will need to specify the remote host IP address and the port number for the TCP/IP server that you want to connect to. The IP address that you specify in Advanced PBX Data Logger when configuring it as a client may also be either a URL or the name of a computer located on your network. For example, if you want to connect to a computer named “Plant1”, you can simply enter “Plant1” for the IP address instead of the actual IP address. If you are configuring Advanced PBX Data Logger as a client and your network is set up to assign IP addresses dynamically to each individual workstation, then you may need to use the name of the PC that you want to connect to instead of an actual IP address in order to guarantee a connection;

2. **Server.** In this mode you should specify the IP address of the local PC will be used and you only need to specify the port number that you would like to use. If your PC has more than one network interface card (NIC) then Advanced PBX Data Logger will display a list of all the IP addresses for each NIC installed in your system so that you can select the IP Address that you want to use. In order for Advanced PBX Data Logger to act as a server, the PC that it is running on must have at least one network interface card with an IP address assigned to it. In Microsoft Windows, the TCP/IP protocol can be configured to automatically obtain an IP address from a host computer. This means that your PC may not have an IP address until it is connected to a network server or a host computer. You may need to contact your network administrator to assign an IP address to your PC if you wish to configure a TCP/IP server connection. This is done in the network settings for the TCP/IP protocol in your control panel.

After you enter the parameters that you would like to use, you must click the “OK” button to establish a connection between Advanced PBX Data Logger and the TCP/IP port. If the current port configuration is set up as a client, it will immediately try to establish a connection to the specified remote server. If the server is not available, Advanced PBX Data Logger will continually try to establish the connection until it is successful. If the port configuration is set up as a server, it will listen the specified port until a client establishes a connection to it.

If one or more port are configured already, then Advanced PBX Data Logger is opening these ports and starting logging. If the port is opened successful, then the status bar in the main window displays a status of this port (fig. 1.1.1). But, before you should configure port parameters that are described below.

You can create the new configuration by clicking the “Plus” button in the main window (fig. 1.1.1) or through the “Options” menu. After you clicked the “Plus” button, the dialog window will be opened
(fig. 2.2.2). The dialog window contains few sections with parameters. The "IP settings" section is described in this chapter.

To log data from more than one TCP/IP connection you would create and configure multiple port configurations. You can manage the configuration created with a drop down menu near the "Plus" button (fig. 2.2.1).

![Fig. 2.2.1 Access to the port configuration](image)

The "IP settings" tab contains indispensable settings of any TCP/IP port: IP address and port.
Port

In addition to IP address, you should specify how to connect to a remote machine. Our software can be thought of as a trunk line with thousands of individual lines (the ports) which are used to connect machines. Some ports are considered well-known ports. For example, the port typically used for network mail systems (SMTP) is port 25, the telnet port is port 23, the network news server port (NNTP) is typically port 119, and so on. To see a list of well-known ports, inspect the SERVICES file in the Windows directory (for Windows NT it is in the WINNT\SYSTEM32\DRIVERS\ETC directory). The SERVICES file is a text file used by Advanced PBX Data Logger to perform port lookups (which return the service name for the specified port) and port name lookups (which return the port number for the specified service name). You can open this file in any text editor to see a list of port numbers and their corresponding service names. While these well-known ports are not set in stone, they are traditional and their use should be reserved for the service which they represent. When writing network applications, you should select a port number that is not likely to be duplicated by other applications on your network. In most cases you can choose a port number other than any of the well-known port numbers.

The IP address and port number are used in combination to create a socket. A socket is first created and then is used to establish connection between two computers. How the socket is used depends on whether the application is a client or a server. If an application is a server, it creates the socket, opens it, and then listens on that socket for computers trying to establish a connection. At
this point the server is in a polling loop listening and waiting for a possible connection. A client application, on the other hand, creates a socket using the IP address of a particular server and the port number that the server is known to be listening on. The client then uses the socket to attempt to connect to the server. When the server hears the connection attempt, it wakes up and decides whether or not to accept the connection. Usually this is done by examining the IP address of the client and comparing it to a list of known IP addresses (some servers don’t discriminate and accept all connections). If the connection is accepted, the client and server begin communicating and data is transmitted.

Connection options

If the remote server (in the client mode) or local network interface (in the server mode) is not available and the "Try to connect after unsuccessful attempt" options is True, then Advanced PBX Data Logger will continually try to establish the connection until it is successful. The program will try to establish the connection each N seconds that you can specify in the "Next try after XXX seconds" field.

Allowed IP addresses

This option is active in the server mode and allows you to enter one or more IP addresses that have access to the server. IP addresses that are not listed in this fields will be refused by the server. This options is very useful if you transfer your data over Internet connection or your server PC is connected to a big corporate network. You can specify multiple addresses - one per row. If you'll not specify any address here, then Advanced PBX Data Logger will accept connections from all IP addresses.

Firewall settings

After you install Microsoft Windows XP Service Pack 2 (SP2), our Advanced PBX Data Logger may not seem to work. Windows Firewall, enabled by default, blocks unsolicited access to your computer via the network and may be blocking the normal operation of the program. To provide increased security to Windows XP users, Windows Firewall blocks unsolicited connections to your computer. When Windows Firewall detects incoming network traffic that it does not recognize, a Security Alert dialog box appears. The security alert dialog box looks like this:
The dialog box includes the following buttons:
- Unblock this program;
- Keep Blocking this program;
- Keep blocking this program, but Ask Me Later.

In order for our program to function properly, you must unblock the program by clicking the Unblock button. Unblocking allows Windows XP SP2 to allow the program to continue to work by adding it as an exception to your Windows Firewall configuration. Exceptions are specific programs and processes that you allow to bypass the firewall. After you add a program as an exception, you no longer receive the security alert. If you choose to continue blocking the program certain functions will be disabled.

Note: If you are using another firewall software, then please, refer to a firewall manual for corresponding settings.

Limitations

The specific limit of connections is dependent on how much physical memory your server has, and how busy the connections are:

The Memory Factor: According to Microsoft, the WinNT and successor kernels allocate sockets out of the non-paged memory pool. (That is, memory that cannot be swapped to the page file by the virtual memory subsystem.) The size of this pool is necessarily fixed, and is dependent on the amount of physical memory in the system. On Intel x86 machines, the non-paged memory pool stops growing at 1/8 the size of physical memory, with a hard maximum of 128 megabytes for Windows NT 4.0, and 256 megabytes for Windows 2000. Thus for NT 4, the size of the non-paged
pool stops increasing once the machine has 1 GB of physical memory. On Win2K, you hit the wall at 2 GB.

The "Busy-ness" Factor: The amount of data associated with each socket varies depending on how that socket's used, but the minimum size is around 2 KB. Overlapped I/O buffers also eat into the non-paged pool, in blocks of 4 KB. (4 KB is the x86's memory management unit's page size.) Thus a simplistic application that's regularly sending and receiving on a socket will tie up at least 10 KB of non-pageable memory.

The Win32 event mechanism (e.g. WaitForMultipleObjects()) can only wait on 64 event objects at a time. Winsock 2 provides the WSAEventSelect() function which lets you use Win32's event mechanism to wait for events on sockets. Because it uses Win32's event mechanism, you can only wait for events on 64 sockets at a time. If you want to wait on more than 64 Winsock event objects at a time, you need to use multiple threads, each waiting on no more than 64 of the sockets.

If you have more than 64 connection at a time, then we recommend to create multiple configuration in our software (the green plus button). Each configuration will use different port number and will run in a different thread. This change will allow to decrease an influence of Windows limitations.

Additional parameters

The "Additional" tab contains additional settings of a TCP/IP or UDP connection (fig. 2.2.4).

Simple terminal emulation - the program realizes simple implementation of some terminal protocols. If this emulation is enabled then the program will process some special commands and character sequences.

Following options are effective only in the "TCP/IP server" mode:

Limit of simultaneous connections - you can define number of clients that can connect to the server at the same time. It allows to optimize a server load with large number of TCP clients.

Disconnect inactive clients after (s) - if a client is connected, but didn't send or receive any data within the specified time, then the connection with this client will be closed. If you will specify "-1" then the clients will not be disconnected.
Following options are effective only in the TCP/IP server or client modes:

TCP keep alive mode

A TCP keep-alive packet is a short packet which is sent periodically by the OS to keep the connection alive. The connection stay alive because those packets and their replies generate small traffic on the connection when the application is idle.

Keep-alives can be used to verify that the computer at the remote end of a connection is still available.

It is simply an ACK with the sequence number set to one less than the current sequence number for the connection. A host receiving one of these ACKs responds with an ACK for the current sequence number.

TCP keep-alives can be sent once every KeepAliveTime (defaults to 7,200,000 milliseconds or two hours) if no other data or higher-level keep-alives have been carried over the TCP connection. If there is no response to a keep-alive, it is repeated once every KeepAliveInterval seconds. KeepAliveInterval defaults to 1 second. Some (buggy) routers may not handle keep-alive packets properly.

Our software supports three modes of keep alive (fig 2.2.4):
1. **Off** - the program doesn't use keep alive at all. You can disable keep alive if your network is very stable or your routers don't support it.

2. **System** - the program will use keep alive, but use system values of KeepAliveTime and KeepAliveInterval. These values are stored in the following registry branch:

 [HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters]
 KeepAliveTime (32-bit number) = milliseconds
 KeepAliveInterval (32-bit number) = milliseconds

3. **Custom** - the program will use keep alive, but you can specify your values of KeepAliveTime and KeepAliveInterval, that are more applicable for your network and system. **Note**: in our software you should define these values in seconds.

 Note: Some routers may not allow keep-alive TCP packets. In this case the "keep-alive" function will not work.

 Following options are effective only in the server mode (TCP/IP or UDP):

 Send client information to the a parser - if this option is activated then program will append a system header to a data packet about the remote client. It allows the parser to separate data packets from several clients that send data simultaneously.

4.6.3 File settings

4.6.3.1 File data source

About log files

A log file is a file containing records about events in the chronological order.

Logging means the chronological recording of data with varied (customizable) level of details about systems events (errors, warnings, messages). Usually, the data is saved to a file.

Examining the contents of an error log file after failures often makes it possible to understand what causes them. Old hardware and software systems use log files to save and store data.

Purpose

The program is used to monitor folders (directories) with log files or separate log files in real time. Once the program detects new data in the log file, it can send notifications to the administrator or export and archive data from log files. The built-in script and filter tools allow you to single out only the events you are interested in from one or several log files. It considerably decreases the load on the administrator whose job is to maintain several web servers or data servers.

A good example of how to use the program is monitoring a computer where a lot of users can create, copy and edit a file. Log files allow you to track all changes and the administrator can control all operations using the log file. With our program, the administrator can create event types that are to be detected (for example, deleting a file or creating a file with a certain name) and receive an immediate notification about this event as a desktop or e-mail message. The program becomes even
more useful if you need to control several servers simultaneously.

How the program works

Once started, the program analyzes the list of folders specified in the configuration checking if these folders exist. If a folder exists, it is added to the scan list, otherwise it is skipped. Once the data source is started, the file list is also filled with the initial file size values. Then the program is switched into one of the scan modes specified in the configuration:

1. "Simple" – simple scan mode. In this mode, the program just analyzes the folders and subfolders specified in the configuration for changes in the file.
2. "Shell" – the shell mode uses operating system events when files and folders are created or modified.

If the program is configured to read data at startup, after the initial processing it will read data from the files of the corresponding folders and subfolders and prepare this data for exporting, archiving or sending notifications.

The program monitors new files and folders and starts processing them in both modes. The program also monitors deleted files and folders and stops processing them.

If a file has just been created or the size of an existing file has changed, the program reads this data from the file and passes them on for further processing. The parameters specified in the configuration are used to read data (see "File settings"). If there is a delay set in the configuration before reading the file and the file changes during this delay, the program delays reading the file for the time of the delay specified in the configuration. If the file changes again, the reading will be delayed again and so on till the file stops changing. After the program reads the file, it performs one of the following three operations with it:

1. The file is deleted;
2. The file is cleared, i.e. the file size becomes equal to zero;
3. The file is not modified.

The program takes into account the file mask specified in the configuration, i.e. if ".txt" is specified in the configuration, the program will scan and read data only from text files – it will ignore all other files. The program also uses the minimum file size value from the configuration during the scanning process. If the file size is less than the specified value, the program does not read the file till the file size is equal to or larger than the specified value.

The program reads data from the file by blocks whose size is specified in the configuration. The larger the block is, the fewer times the program accesses the disk and the better the performance is, but the requirements to the computer performance are higher.
Select the "Folders" tab in the "Configuration options" window and you will see the list of folders on the screen (fig. 2.6.1).

Fig. 2.6.1 Folders settings

Data source name – the field contains any name that will denote the operations performed with files. You will see this name in the drop-down list in the main window of the program. By default, it is Data source #XXX, where XXX is the number of the data source.

By default, the list of folders for scanning is empty. Click the "Action" button or right-click the empty list and you will see the action menu (fig. 2.6.2).
Add... - the item allows you to add a new folder to the list. After you select this item, you will see the Folder Properties dialog box on the screen (fig. 2.6.3). Specify the folder properties, click the OK button and the folder will appear in the list. If you change your mind, click Cancel.

Delete - the item removes the selected folder. Before the deletion, the confirmation dialog box will be displayed on the screen when you will have to click Yes to remove the folder from the list or No to cancel the operation. The item is not available if the list is empty.

Edit... – the item shows the "Folder properties" dialog box (fig. 2.6.3). Change the folder properties and click OK to save them. If you change your mind, click Cancel. The item is not available if the list is empty.

Up - the item moves the folder one position up. The item is not available when the list is empty or when the first folder is selected.

Down - the item moves the folder one position down. The item is not available when the list is empty or when the last folder is selected.

Path - the field contains the path to the folder. You can select the folder from the list by pressing the button to the right. The default folder is the current one.

Subfolders - the checkbox enables/disables scanning subfolders. By default, subfolders are scanned.
Depth - the depth of scanning subfolders. 9999 by default.

Note: The scanning depth is counted from the specified path to the folder. For example:
- C:\Files\Data\Test - source folder
- C:\Files\Data\Test\Folder0 - level 1
- C:\Files\Data\Test\Folder0\Folder1 - level 2
e.tc.

Note: If the specified folder does not exist, you will see an error message on the screen and you will not be able to save the folder properties so it is recommended to select folder from the list by clicking the button to the right from the Path field.

4.6.3.3 Files settings

Select the "**Read options**" tab in the "Configuration options" window and you will see the file and scan settings on the screen (fig. 2.6.4).

![Fig. 2.6.4 Shell mode](image)

Scan mode - the list allows you to select one of the scan modes: **Simple** or **Shell**. In the Simple mode, the program just goes through files in the specified folders and subfolders and checks if the
the file size has changed. The Shell mode uses operating system events to check changes in the file size. The program monitors new files and folders and deleted files and folders in both modes. If the operating system does not support the Shell mode, only the Simple mode will be available in the list. The default mode is Shell.

Shell mode

File mask - the field contains the file mask used to scan files. The program processes only those files that match the mask. For example: *.* - all files are processed, *.txt - only text files are processed, *.exe - only executable files are processed. The default is *.*.

Block size (bytes) - the field contains the size of the block (in pixels) used to read data. If the size is too small, Data will be read multiple times from the file, which will result in a delay. If the size is too large, it may also result in a delay. Choose the optimal data block size. The default is 512 bytes.

Min file size - the field defines the minimum size of a file to be processed. There is a list to the right from this field. It contains measurement units: Byte(s), KByte(s) and MByte(s). If the size of the file is less than that specified in the field with the corresponding measurement unit, it is not processed. The default is 1 Byte(s).

Time after change (msec) - the field contains the delay before the file is read. If the file changes again during the delay, the reading will be delayed again and so on till the file stops changing. The default is 500 msec.

Read data on start - the checkbox allows the program to read data from the file and pass them to the kernel at the program startup. The above parameters are used to read data. It is disabled by default.

Read and delete - if the option is selected, the program will delete the file after the data is read. It is not selected by default.

Read and truncate - if the option is selected, the program will clear the file so that its size equals zero after the data is read. It is not selected by default.

Read and don't change - if this option is selected, the program will leave the file unchanged after the data is read. It is selected by default.

Simple mode

All parameters are the same as for the Shell mode except for the last option.

Scan interval (sec) - the field contains the scan interval value. The default is 30 sec.
Select the “Schedule” tab in the Configuration Options window and you will see the log file scan schedule settings on the screen (fig. 2.6.5).

![Fig. 2.6.5 Schedule]

These options allows you to specify:
1. The days to scan on (the “Days of week” group);
2. The time when to scan (the “Time of day” group). If you specify the interval as 0:00:00-0:00:00, scanning will be done around the clock.

These options can be useful if, for example, you do not want to scan log files at weekends when the computer is off or when the administrator will not see notifications anyway.
4.6.4 TAPI

4.6.4.1 Selecting TAPI devices

This tab contains the list of TAPI devices. The content of this tab depends on a TSP driver for your PBX. It can be a PBX, trunks lines or extensions. To enable monitoring a device, select it in the list. Note that a device can be compound, i.e. one physical device may represent several logical devices. The “TAPI lines” list contains logical devices.

![Fig.1 TAPI lines list]

Split calls – This feature allows to produce records for each stage of a call (e.g. begin, dialing, ringing). Call splitting is not necessary to receive a record on each transfer. The transfer will be logged automatically.

Try to open again after a failed attempt – if this option is enabled, the program will wait till the device appears and automatically start logging data from it in case the TAPI device is connected and disconnected periodically.
How to connect Panasonic PBX through USB

1. Connect your PBX using an USB cable.
2. Install the USB driver for your PBX and OS (x64 or x86). Please, verify that the driver is installed successfully.
3. Install TAPI Service Provider (TSP)

Please choose your PBX:

<table>
<thead>
<tr>
<th>Panasonic KX-TDA/TDE/NCP/NS</th>
<th>TSP v4.2 x86 (16.5 MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panasonic KX-Series TSP</td>
<td>TSP v4.2 x64 (20.6 MB)</td>
</tr>
<tr>
<td>Panasonic KX-TDA, Panasonic KX-TVM, Panasonic KX-TE</td>
<td>Installation Manual (961 KB)</td>
</tr>
<tr>
<td>Panasonic KX-TD</td>
<td>USB-driver (610KB v2.3.0.0)</td>
</tr>
<tr>
<td></td>
<td>TSP (1,6MB v1.2.177)</td>
</tr>
</tbody>
</table>

4. Reboot your computer
5. Add the new "TAPI" data source in our software (by clicking the "Plus" button)
4.6.5 Additional parameters
4.6.5.1 Data view change

Data view settings, that can be configured on the "Data view" tab:

1. **View characters with code** - the program can interpret and decode bytes as characters. You can select decoding mode for each characters range. If the range doesn't have the corresponding character, that's why these data can be displayed only in hexadecimal and decimal code.

2. You can set data byte display **users format**. The directive %d shows to display an decimal code, the directive %x - hex code. You can set any framing characters before/after the user format.

3. **Highlight data sent on screen** - string with sent data will be highlighted by the set color.

5. **Data source custom color** - if you've created several configurations then you can define a custom color for each data source that allows to distinguish data flows on the “All data” page in the main window.

6. **Split strings by data timeout** - this option allows to visually split data packets in the program.
window. A data packets that will be received after the specified interval will be showed on a new line. If this value is set to 0 then data packets will not split.

7. **Split continuous data blocks large than** - this option allows to visually split continuous data flow in the program window. The program will show data from a new line every specified interval.

8. **Split by characters** - this option allows to visually split continuous data flow in the program window using the specified symbols. For example (fig. 3.1.1), the program will use a character with the 0Ah hexadecimal code that is equal to the "LF" ASCII code.

4.6.5.2 Date/time configuration

This group of options (fig. 3.2.1) allows you to configure how data and time stamps appear in the log file and on the screen. You can configure the stamp format in the [program options](#).

![Configuration options](image)

Date/time stamp

- **Add to display output for data sent**
- **Add to display output for data received**
- **Add if data direction has been changed**
- **Add for data packets (after parsing or split by characters)**
- **Add at begin of file**

Stamp timeout [ms]

File prefix/postfix character(s)

Note: Additional date/time stamp options are located in program options

Main menu -> Options -> Program option -> Date/time stamp

![Fig. 3.2.1 Time stamp configuration](image)

Add to display output for data sent - the time stamp will be added for the sent data displayed on the screen. The stamp will be added according to the timeout (if the data flow is uninterrupted) or when a data packet is sent.

Add to display output for data received - the same but for the received data.

Add if data direction has been changed - if the program is sending and receiving data, the time
stamp will be also added when the data transfer direction changes (sending/receiving).

Add for data packets - if the data is displayed after it is processed, the stamp will be added to each processed data packet.

Add at begin of file - the stamp will be added at the beginning of every new log file.

Stamp timeout - if the data flow is uninterrupted, the stamp will be added regularly at the interval specified in milliseconds.

File prefix/postfix character(s) - the program will use these characters instead of those specified in the program options while writing data to a file. For example, it allows you to add the new line character or another sequence of characters before or after the stamp. Example: >#0D#0A

4.6.5.3 Name and security

This group of options (fig. 3.3.1) allows you to configure the following parameters:

Friendly name - this name will be added before the port number or the data source in the drop-down list in the main window of the program. It allows you to describe the data source.

Start logging automatically - if this option is enabled, the program will start receiving and logging data automatically when it is launched.

The "Security" option group allows you to protect user operations in this particular configuration with a password. You can specify advanced security options applied to the entire program in the program options.

Ask password before start and stop - the password will be required when the user clicks the "Start/Pause" button in the main window of the program.

Ask password before configuration edit - the password will be required when the user tries to open the Configuration options dialog box.
Fig. 3.3.1. Name and security
4.6.6 Log files

4.6.6.1 Log rotation

The main function of Advanced PBX Data Logger is logging data to a file (so-called, log file). The “Log rotation” tab has a rich set of options for it. (fig. 4.1.1).

First of all, select log file what you can configure:

- **Log file for data received** - all data received will be saved here.
- **Log file for data sent** - all data sent will be saved here. If you want to save data to the same file, as data received, then select the “Log file rotation for data sent” from the list and enable two options: “Create log files on disk” and “Write to log file for data received”. Yes, of course, you should configure a log rotation for data received before.

Set the “Create log file on disk” option to checked state. Then you can set path to folder, where files will be created with the help of dialog window, which will be showed up after clicking a button with picture of opening folder. You should select a necessary folder in the dialog window and click the “OK” button.

Note: The program can work with network paths too, but in this mode, the program will increase
data flow over a network and can be failed with exceptional errors.

A log file name can be stamped with date and time. In this case a new log file is created periodically. The time stamp format depends on the selected period. For instance, if the "File name prefix" field is set to "sample", the "File extension" field to "log" and the "File name format" option is "Daily", then each log file created will have the format "sampleYYYYMMDD.log". On March 21st, 2003, the log file will be "sample20030321.log". Please, note, that the final extension (after the final period), remains at the end of the file name.

Log rotation mode is defined by the following key parameters:

- **File name prefix** - text string, which will be added at file name beginning;
- **File name extension** - text string, which will be a file extension (characters after dot);

Limit size - the "Limit size" field specify the maximum size in kilobytes of any log file. If you'll specify zero size, then the file size will not limited. You may select from the following modes:
1. **Clear file** - if the log file size will exceed the limit specified, then the log file content will be deleted and file filling will start from beginning.
2. **Rename old** - if the log file size will exceed the limit specified then the existing log file will be renamed.
3. **Shift (no threshold)** - the older data over the limit specified will removed from the log file.
4. **Shift (with threshold)**. In this mode the program will wait when the file size will exceed the limit specified + the threshold value. After this, the older data over the limit specified will removed from the log file.

If the program works continuous for a long time, it is possible that the log file will have large size and this file will be inconvenient for looking and analysing. For this there is the possibility to create files in dependence with the time on PC. You can select one variant predefined or set up new one:

- **Daily** - file will be created with name containing prefix, and date in format DDMMYYYY, where DD is two-digit day sign, MM is two-digit month sign and YYYY is four digits of the current year. The file name extension will be added at the end of file;
- **Monthly** - file will be created with name containing prefix, and date in MMYYYY format. The file name extension will be added at the end of file;
- **Each data packet in different file** - in this mode the program splits data flow to a different file. In this mode you should configure the parser or the program will split a data by timeout about 300 ms.
- **Don't create new file** - in this mode the program will write all data to one file. It is recommended for a small data flow. Otherwise your log file will be too big and a performance of the program will fall down;
- **User's format** - file will be created with name containing prefix and date in showed by you format (for example, DDMMYYYY). The file name extension will be added at the end of file. The file may not contain format signs, then file name will be constant. You should not use characters, that the OS doesn't allows in file name, such as "/", ",", "?" and some others;
- **Weekly** - create a new file every week. The file name will contains a week number;
- **After data timeout** - the program will create a new file if the program didn't receive any data at the specified interval.
- **Hourly** - file will be created with name containing prefix, and date in format YYYYMMDDHH, where HH is two-digit hour sign, DD is two-digit day sign, MM is two-digit month sign and YYYY is four digits of the current year. The file name extension will be added at the end of file;
- **Constantly named file** - the current log file will have a constant name. When creating a new file the existing log file will be saved using the new file name that will contain a data and time...
Date and time formatting codes:

d - day, not adding null (1-31).
dd - day, adding null (01-31).
ddd - day of the week in text form (Mon-Sat) according to standard, set on this computer.
dddd - day of the week in full text form (Monday-Saturday) according to standard, set on this computer.
m - month, not adding null (1-12).
mm - month, adding null (01-12).
mmm - month in text form (Jan-Dec) according to standard, set on this computer.
mmmm - month in full text form (January-December) according to standard, set on this computer.
yy - year in the form of two last digits (00-99).
yyyy - year in the form of four last digits (0000-9999).
h - hours, not adding null (0-23).
hh - hours, adding null (00-23).
n - minutes, not adding null (0-59).
nn - minutes, adding null (00-59).
s - seconds, not adding null (0-59).
ss - seconds, adding null (00-59).

Example: you want to create log file every hour. It is desired that file name starts from "sample_log" and the file extension "txt".

Answer: set file prefix = sample_log, file extension = txt (without dot!). In file name format show HHDDMMYYYY. Now file will be created every hour. Naturally, you can set any formatting characters combination, described higher.

If you want to access to a log file while the program work, then you should configure access mode settings for the log file in the next chapter.

Add date/time stamp to file name - this option is available for modes #4 and #7 and allows to add date and time to the file name.

Add data source ID to file name - if this options is activated then then the program will append the data source name at the beginning of the file name. For example, COM1-sample20030321.log.

Write data/time stamp to file before writing data - if this options is activated then then the program will write a date/time stamp to a file before each data portion.

Overwrite existing files - this option is available for modes #4 and #7 and allows to delete an existing log file before creating a new log file.

4.6.6.2 Log file access

During work can be such situations, when it is necessary to get access to a file with current data (current log file) from other applications (for example, for data processing). But while you are accessing the current log file Advanced PBX Data Logger can't write data to a log file and all data at this moment will be lost. We recommend to use a temporary file for data storage. It is most safe way. (fig. 4.2.1).
You can select one from following variants:

- **Ignore and not write** - with this mode, the data will be lost;
- **Write to a temporary file, then append** - a temporary file will be created, to which writing will be done. After access to current file will be got, temporary file content will be added to the end of main file. But mind that if file is created in dependence of time, there can be a situation when at temporary file forming name of the main file will be changed. Then temporary file will be added to the end of newly created file.
- **Display a message and stop work** - data will be lost until dialog window is closed.

You can set up your message text, which will be displayed at writing error to data file. The sound signal can be on for an additional indication. You can also enable writing a message to a protocol file.

4.6.6.3 Log deletion

The deletion of files (fig. 4.3.1) will help you to avoid stuffing your hard disk with needless information. Log files can be deleted either depending on the time of storing or when the maximal number of files is exceeded.
When deleting files by the time of their storage, the files that were modified last time before the specified period are deleted.

When controlling the number of files, the files with the oldest modification dates are deleted first.

You can select both variants of file deletion. In that case files will be deleted when either of the conditions is true.

![Configuration options](image)

4.6.7 Modules

4.6.7.1 Introduction & setup

To extend program functionality we implemented plug-ins modules. Module structure lets reduce your program size and purchase costs (you pay only functionality, which you need), to low down program distributive download time, your computer processor load and reduce disk space.

Advanced PBX Data Logger supports few types of modules (fig. 5.1.1 - 5.1.3):

- **Data query** - transmits queries or commands out the data source to control or query your instruments directly;
- **Data parser** - data parser that allows you to parse, filter and format more complex data from more sophisticated devices. Some of the advanced features of the parser are the ability to work with raw binary or hex data;

- **Data filter** - data filters allow you to filter your data and modify values of parser variables;

- **Data export** (fig. 11) - Advanced PBX Data Logger has many modules for passing serial data directly to other applications, such as as keystrokes where incoming data is passed to other programs as a sequence of keys, as DDE Server that passes data to other programs using Dynamic Data Exchange, ODBC for exporting data to a database and many others;

- **Events handling** (fig. 12) - an external plug-ins used to handle events generated by the Advanced PBX Data Logger software. Once an event occurs (for example: "Data source is opened" or "Configuration changed"), the plug-in creates a text message using the specified template and sends a notification, do some actions, such as execute programs, scripts and etc. The form of the notification or actions depends on the plug-in settings.

![Configuration options](image)

Query Parse Filter

<table>
<thead>
<tr>
<th>Modules</th>
<th>Configuration options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log file</td>
<td>Query Parse Filter</td>
</tr>
<tr>
<td>Other</td>
<td>Data query module</td>
</tr>
<tr>
<td>COM port</td>
<td>None</td>
</tr>
<tr>
<td>Data export</td>
<td>Parser module</td>
</tr>
<tr>
<td>Events handling</td>
<td>ASCII data query and parser (default.dll)</td>
</tr>
<tr>
<td></td>
<td>Parsing and exporting for data sent</td>
</tr>
<tr>
<td></td>
<td>Parsing and exporting for data received</td>
</tr>
</tbody>
</table>

Select data filter modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation (aggregator.dll)</td>
<td>4.0.26.1118</td>
</tr>
<tr>
<td>Deadband (deadband.dll)</td>
<td>4.0.27.1103</td>
</tr>
<tr>
<td>Expressions (expressions.dll)</td>
<td>4.0.34.1103</td>
</tr>
</tbody>
</table>

![Fig. 5.1.1. Activating plug-ins](image)
Fig. 5.1.2 Activating data export plug-ins
You can parse and export data sent and received (fig. 5.1.1). By default, only data received will be parsed.

Installation

You can easily install a new module. usually, you should start the installation file and click the "Next" button for few times. The installation wizard will detect a place of your Advanced PBX Data Logger software and place a plug-in module and all distributive files to the "Plugins" folder, which is in the program folder (by default X:\Program Files\Advanced PBX Data Logger\Plugins).

After program restart a module will be loaded and initialized. If module is supported with our software, its short description you will see in modules list (Fig. 5.1.1-5.1.3). Most modules require additional settings. If you want to configure the plug-in module, simply click the "Setup" button near it. If you selected the module and the "Setup" button is not active, then module doesn't have additional settings and can work without additional settings. Please, read users manual of a corresponding plug-in for additional information.

Configuration steps

1. Select and configure a query module. You may use a module of this type if you need to send
some data to your device (for example, initialization strings or request strings).

2. Select and configure a parser module. This step is necessary, because filter and export modules can use parsed data only. If you didn't select the parser module, then you can't configure the data filter and data export modules.

3. Activate and configure data export modules. You can select one or more modules simultaneously. The program will use selected modules simultaneously. Please, note, the program can't use the data export module, if you didn't configure the parser module.

4. Activate and configure event modules. You can select one or more modules simultaneously.

4.6.7.2 OPC server

Since the version 2.1.1 Advanced PBX Data Logger has an internal OPC server. It means, that any OPC compatible client application can get data from Advanced PBX Data Logger without any additional software. For connecting to the OPC server our OPC server has an unique attributes (Fig. 5.2.1). Before using the OPC server on your PC you should download and install the OPC Core Components Redistributable from www.opcfoundation.org (registration required).

![Fig. 5.2.1 OPC server parameters](image)

Advanced PBX Data Logger are parsing all incoming data to one or more variables and OPC client are getting it (fig. 5.2.2). After connecting to the OPC server you will get list of all variables.
Clients activity is showed on the "Active clients" tab. The top node is client, below is group of items and connected items. By double-clicking, you can get a detailed information about each node.
Advanced PBX Data Logger creates new variables at “on-the-fly” mode. The Advanced PBX Data Logger starts without any variables and get it only after first data had been received. If your client OPC will connect to the OPC server before, than data had been processed, then it will get empty list of variables and your OPC client should poll the OPC server for updating list of variables. If your OPC client doesn't allow it, then your can pre-define all variables (fig.5.2.4). In this case the OPC server will create these variables with empty values, immediate after starting and your OPC client will get these names while connecting.
4.6.7.3 How to configure logging to the database using the ODBC Database module

4.6.7.3.1 Preliminary requirements

If you are going to use an MS SQL Server, MySQL, or Oracle database, first create a database with tables for storing data.

For MySQL or Oracle, you need to install the latest 32-bit version of ODBC drivers.

Download links:

MySQL: http://dev.mysql.com/downloads/connector/odbc/

Windows XP or higher already contains ODBC drivers for MS SQL Server.
The simplest solution is to install or reinstall the program, and then select the respective option in the installation wizard (Figure 1):

- Select “Create a configuration”
- Select a parser for your PBX
- Select a database type

![Configuration template](image)

If you are using an MS SQL Server, MySQL, or Oracle database, your must specify a connection string and the credentials (login and password) of an administrator/user who has the privileges to create objects in the database.
At the next step, you can choose whether to create any objects in the database. You can copy the object creation script and pass it to your database administrator, who will create objects for you. If you prefer to do that, just skip this step.
Figure 3. Creating objects in the database

Figure 4. Selecting a data source type
If the installation is successful, Advanced PBX Data Logger will be configured to write data to the database. You only need to configure the connection to your PBX. PBX Reports will also be configured to read data from the same database.

4.6.7.3.3 Option 2

In this case, you will be configuring everything manually.

1. Create a configuration (if you haven’t done it yet) by clicking the “green plus” button in the program’s main window.

2. Configure a connection to your PBX.

3. Switch to the “Modules — Query Parse Filter” tab and select a parser for your PBX (Figure 1).

Note: A lack or incorrect operation of the parser may prevent data from being written to the database. The next section describes how to check the parser’s operation.
4. Switch to the "Modules — Data export" tab and check the "ODBC database" checkbox (Figure 2).
5. Open the data export module’s settings by double-clicking the module’s name.

6. Click the “Load & Save” button (Figure 3), and select:

- “PBX-Logger-ODBC-Items” — if you are going to write data to a MySQL, MS SQL Server, or Oracle database.
- “PBX-Logger-ODBC-Access” — if you are going to write data to an MS Access database.

7. Switch to the “Common” tab (Figure 3) and enable data logging to the database.
8. Switch to the “Connection” tab.

8.1. If you already have an ODBC data source, select it from the list (Figure 4).
8.2. If you do not have any ODBC data source yet, click the “Setup” button and create a **system ODBC data source**. For more details, see the next section. After creating the data source, click the Refresh button and select the newly created data source in the list.
9. Click “OK” and save all changes both in the ODBC database settings window and in the module selection window. Now each time new data are received, the program will write them to the database.

4.6.7.4 Creating an ODBC data source

Note: In 64-bit editions of Windows, there are separate lists of data sources for the 32-bit and 64-bit modes. You need to configure a data source for the 32-bit mode. To access the respective version of ODBC data source administrator, click the “Setup” button in the “ODBC database” module.

Note: The system ODBC data source lets you run the program as an application or as a **service**.

1. Switch to the “System DSN” tab and click the “Add” button (Figure 1).
2. In the window that opens, select a driver for your database (Figure 2).
3. The following steps depend on the driver selected. Usually you should configure a connection to the database.

4.6.7.5 Checking the parser’s operation

If you can see the data in the program’s main window but not in the database, you may need to check the parser. Possibly, the parser works incorrectly. That usually happens if the parser expects data in a different format than that sent by the PBX.

1. Select the “DDE server” data export module (Figure 1).

2. Click “OK” to save changes.

3. Wait for new data.

4. Open the list of data export modules (Figure 1) and double-click “DDE server.”

5. In the module’s settings window, switch to the “All active items” tab. If you can see the parsed data from your PBX and everything looks fine, the parser works correctly.
6. After checking the parser, you can disable the “DDE server” module.

4.6.7.6 How to configure logging to the database using the SQL Database Pro module

4.6.7.6.1 Why the SQL Database Pro module is better than ODBC Database

SQL Database Pro has the following key advantages:

1. It can keep a backup copy of data while the main database is offline or unavailable, so you can build a robust system.
2. It can access stored procedures on the server.
3. It can execute a queue of SQL queries.

When to use SQL Database Pro

1. If the database is hosted on another computer, especially on a remote server accessed over the Internet.
2. If you need to write data to two databases or two tables in parallel.
3. If the data is going to be written to the database in a special way (for example, using a stored procedure).

4.6.7.6.2 Preliminary requirements

Oracle: You need to install Oracle Client on the computer where you are going to install the program.

4.6.7.6.3 Setup

1. Create a configuration (if you haven’t done it yet) by clicking the “green plus” button in the program’s main window.
2. Configure a connection to your PBX.
3. Switch to the ‘Modules — Query Parse Filter’ tab and select a parser for your PBX (Figure 1).

Note: A lack or incorrect operation of the parser may prevent data from being written to the database. The next section describes how to check the parser’s operation.
4. Switch to the “Modules — Data export” tab and check the “SQL Database Pro” checkbox (Figure 2).
5. Open the data export module’s settings by double-clicking the module’s name.

6. Switch to the “Connection mode” tab and make sure that the “Temporarily disable” checkbox is unchecked (Figure 3).
7. Switch to the “Connection parameters” tab and configure the connection:

- Connection string, which consists of the database server’s IP address and the database name.
- Login and password.
- Additional connection parameters.

For more details on connection parameters, see the module’s help file. To open it, click the question mark in the window title bar, and then click the “Database name” field.
8. Switch to the “SQL queue” tab (Figure 5).
9. Click the “Action” button, and then select “Load SQL queue from a file” in the drop-down menu. You can find a text file named “pbxlogger-sql-queue.txt” with all necessary SQL queue parameters in the module’s folder \plugins\sqldb_pro\.

10. Click “OK” and save all changes both in the SQL Database Pro settings window and in the module selection window.

Now each time new data are received, the program will write them to the database.

4.6.7.7 Logging additional data from your PBX

Advanced PBX Data Logger is a universal solution that supports a wide range of PBX models. By default, the program logs only a limited set of the most necessary data. However, some PBXs can generate a lot more data. For a full list of parser variables for each PBX, please follow this link: http://www.aggsoft.com/pbx/.

If you need to log additional data to the database, you can modify the bindings between certain columns and parser variables. Our program creates a table named “PBXDATA” in the database. There are columns FLAG1 ... FLAG7, which may contain different values depending on your PBX model.
In the example below, you can see how to log the additional value “CALL_ID” for Avaya IP Office 500.

ODBC Database

1. Open the module’s settings window and switch to the “Binding” tab.

2. Find the column named “FLAG1” in the binding tree.

3. Click the “Parser item name” item and bind it to a different parser variable, “CALL_ID” (Figure 1). If the drop-down list does not contain the variable name, enter that name manually.

![Figure 1. Binding in ODBC Database](image)

SQL Database Pro

You can configure SQL Database Pro in the same way.

1. Open the module’s settings window and switch to the “SQL queue” tab.

2. Find the column named “FLAG1” in the binding tree.

3. Click the “Parser item name” value and bind it to a different parser variable, “CALL_ID” (Figure 2). If the drop-down list does not contain the variable name, enter that name manually.
4.6.7.8 Possible problems when the program running as a service tries to write data to the database

In Windows Vista or higher, logging to the database works fine if the program runs as an application, but fails if the program runs as a service.

Solution:

Such behavior is caused by the Windows security policy. A service is launched with the administrator's full privileges, but an application may be launched with the administrator's limited privileges.

1. Run the program with the administrator's full privileges by right-clicking the program's icon and selecting "Run as administrator."

2. Check the program's settings. Possibly, they are different in this mode.

3. Make sure that the program writes data to the database.
3.1 Database authentication may not allow a connection with such privileges.
3.2 The firewall may block the connection to the database.

4. If everything looks fine but still no data are written to the database, do the following:

4.1. Enable logging of all messages to the program’s log file (Figure 1).
4.2. Launch the service.
4.3. Check the log file in the folder “C:\Users\All Users\Advanced PBX Data Logger”

4.6.7.9 How to view data in PBX Reports

PBX Reports uses the data written to the database by Advanced PBX Data Logger. PBX Reports can work only with a MySQL, MS SQL Server, Oracle, or MS Access database. So Advanced PBX Data Logger must be configured to write data to a database that is supported. If any data are successfully written, they should appear on the “SMDR records” tab (Figure 1).
Advanced PBX Data Logger writes data to the database in real time. To display new data on the “SMDR records” tab, click the Refresh button (see Figure 1).

What to do if I cannot see any data in PBX Reports?

Make sure that PBX Reports connects to the same database as used by Advanced PBX Data Logger. To do that, compare the database connection parameters in any data export module of Advanced PBX Data Logger (see the previous sections) and in the PBX Reports settings:

2. Switch to the “Common — Database” tab.
3. Check the connection parameters.

4.7 Program options

4.7.1 Window view

This tab in program options (fig. 6.1.1) allows you to customize appearance of the main window of the program (fig. 1.1.1). You can access this tab through the “Options -> Program options” menu item in the main window.
You can set following parameters:

- **Start in minimized state** - at start Advanced PBX Data Logger will automatically put its icon on panel near clock (SysTray fig. 6.1.2);
- **Minimize to SysTray** - while the main window of Advanced PBX Data Logger minimizes, the program will automatically put its icon to the panel near clock;
- **Show data window** - if you specify this option, then the program will display all data in the main window. If you are logging many ports on slow PC, then you can decrease computer CPU load rate with disabling of this option;
- **Output data on screen in minimized state** - if you'll enable this option, then the program will display processed data in minimized state. If you are logging many data sources on slow PC, then you can decrease computer central processor load rate with disabling of this option;
- **Font type** - the data will be displayed with this font type in the main window only. We recommend to use mono-spaced fonts in this field, such as: Terminal, Courier etc.;
- **Screen buffer** - at exceeding of value specified the data window will be cleaned;
- **Window view** - will let you setup data window view (font color, font type, background color).
- **Transparency** - in Windows 2000 and later will let you set transparency of the main window. The most left position is normal window view and most right position is maximum transparency.
- **Wrap words** - if you didn't configure a parser module or your data flow doesn't contain a blocks separator, then your data without this option enabled will be displayed as one long string in the data window.
4.7.2 Date/time stamp view

This group of options (fig. 6.2.1) allows to configure the format of date/time stamps that will be used in the main program window and log files.

Prefix/Postfix characters for display output - these options allow to define beginning and ending characters of a date/time stamp that will be showed in the program window. When outputting data to
a log file the program uses individual characters for each configuration.

View mode - allows to select the standard or define the custom format of the date/time stamp.

Font - this group allows to define the color and font of date/time stamp.

Add data direction sign to a stamp - if this option is activated then the program will append TX or RX to the end of the stamp.

Add data source ID to a stamp - if this option is activated then the program will append data source ID at the beginning of the stamp. For example, COM1.

4.7.3 Protocol and errors handling

While the program executes, it generates many messages about errors and events. All these messages are being registered in a protocol file. This can be start or stop of the program, some messages from plug-in modules etc. On this tab you can define the kind of messages, which you want to put a protocol file (fig. 6.3.1). Here you can set maximum protocol file size and a formatting mode. Usually, the protocol file is in a program folder and has the name of the program with the 'log' extension.
Advanced PBX Data Logger works with three types of messages:

- **Information messages** - this type of messages informs you on operations which are fulfilled in the current time;
- **Warnings** - warns you of possible failures or possible errors. Interference of the user is not required, but check is required;
- **Errors** - the program has detected an error which elimination needs involvement of the user.

There is the possibility to log following events:

- **Program messages** - messages about start or stop of the program, etc.;
- **Data query** - messages which are generated in a data query module;
- **Data parser** - messages which are generated in a data parser module;
- **Data export** - messages which are generated in a data export module;
- **Other** - messages that can not be associated with types above.

You can write each type of messages to a protocol file or and to the list in the main window. Please, specify necessary options for each message type at "Window" and "File" fields.

If you don't want to allow to grow a protocol file size to an unlimited size, then you can enable the "Clean protocol at program start" or limit protocol file size in the "Size" field.

Some exceptional messages can occur while the program execute. In most cases these messages crash the program and the most safe way is to restart the program. Please, specify the "Restart program at exception" option and the program will be restarted automatically.

If you want look all program messages, then you can disable the "Don't display messages at unhandled exceptions" check box and the program will open the exception message window with detailed information.

4.7.4 Service mode on Windows 2000+

4.7.4.1 Configuration

Windows NT+ services use will let you:

- control service on local and remote computers, including remote computers with Windows NT 4.0 system;
- setup actions on emergency service restore in case of failure, for example auto service or computer restart (only on computers with Windows 2000 or later);
- create for services other names and descriptions, to find them easier (only on computers with system Windows 2000 or later);
- run service before user login (password input);
- service can be setup on automatic start after operation system load.

*Note 1: you must be logged in as an administrator in order to change the configuration or control the service in any way (start, stop, pause, continue).

Note 2: On Windows Vista and later you should start the program with elevated administrator
If you want to use the program as a service application, then, please, go to the "Options -> Program options -> Windows service" tab (fig. 6.4.1), then enable the "Use program as a service" check box. Later, please, specify the startup type of the service. There can be following variants:

1. **Automatic** - service will be started automatically at every Windows start, before user login;
2. **Manual** - you can start the service application in the "Services" window in the Control panel (fig. 6.4.2);
3. **Disabled** - service can't be started.

If you want to change program settings while service mode, then enable the "Allow service to interact with desktop" option. In this case, the program will put the icon to the SysTray (fig. 6.4.2). But then your interactive service will be restarted while user log off.
If you use databases or special drivers, before service run, these applications must be run. You can specify what services should be started before Advanced PBX Data Logger in the "Program depends on services" window (fig. 6.4.3).

In some cases you need to start Advanced PBX Data Logger before starting other services. In this case you should:

- Switch a start mode of a target service to "Manual";
- Start Advanced PBX Data Logger;
Set on the target service at the "Services depend on ASDL" tab;
Select mode when you need start these service;
Restart Advanced PBX Data Logger.

After you installed the service mode of the program, restart a computer or run the service manually from the "Services" window in the Control panel (fig. 6.4.4)

After start of the service, the service processes names will be displayed in a process list: pbxloggersrv.exe and pbxlogger.exe (fig. 6.4.5). The 'pbxloggersrv.exe' application makes interface between the service manager and the Advanced PBX Data Logger software. Unlike srvany.exe utility, our service stops safely.
If you want to configure the program as a service, then you must be logged with administrator rights. The service application can be controlled, stopped or removed with help of a command line string. Run pbxloggersrv.exe with following parameters:

- `/?` - short help;
- `/I` - install service for start in manual mode;
- `/A` - install service for start in automatic mode;
- `/D` - install service in off state;
- `/R` - remove service from computer.

Windows Vista+ notes

One of the ways Vista's security was improved was by separating system services and user applications into separate 'sessions'. Keeping the system services isolated helps to better secure them, but also makes any interactive interface unavailable to the user. That's where the Interactive Services Detection service comes in. When a service needs to interact with the user, Interactive Services Detection presents a dialog that will switch the user to the session where the service is running so they can interact with the service. For an excellent, detailed description of this, see next
Many sites recommend disabling this service, but doing so will result in you not being able to interact with any services that require your attention. This service is run manually by default, so there is little point to disabling it unless you don’t want to be bothered by important information from the software you may be trying to run.

- **Display Name:** Interactive Services Detection
- **Service Name:** UI0Detect
- **Process Name:** UI0Detect.exe
- **Description:** Enables user notification of user input for interactive services, which enables access to dialogs created by interactive services when they appear. If this service is stopped, notifications of new interactive service dialogs will no longer function and there may no longer be access to interactive service dialogs. If this service is disabled, both notifications of and access to new interactive service dialogs will no longer function.
- **Path to Executable:** %windir%\system32\UI0Detect.exe
- **Default Startup:**
 - * Home Basic: Manual
 - * Enterprise: Manual
 - * Ultimate: Manual

4.7.5 Restart & Security

Sometimes the program should be restarted. For example, if you’ve changed the program settings remotely and want to reload program automatically with the new settings. To do that, specify the time for restarting the program on the “Restart & Security” tab in program options “Options->Program options”. Just specify the time of day, when the program should be being restarted.
On this tab you can also protect some actions with the program by a password. To do that, activate the “Protect by password” option, define a password and select protectable actions.

6 Having problems?

6.1 Program doesn’t run or work

It is necessary to make sure in proper time installation on your computer, so as if you put clock after program installation, protection from use after trial period works.

Also program won’t work, if you started Softlce application debug environment or some other. In any other case, please, inform our developers about your problems, our address support@aggsoft.com.
6.2 FAQ

Question: Why COM port doesn't open?
Answer: Probably, some other program already uses it (COM port). This can be DOS application, for example.

Question: What to do?
Answer: Close application, using this communicative port (for DOS application close also DOS session window). Or use other communicative port. Probably, at start or some program stop was made some fatal error and COM port wasn't properly closed.

Question: Is it possible to set variable data transmit rate or transmit 9 data bits?
Answer: No, Windows operation system doesn't let such liberties.

Question: What cutoff point type to use: DB25 or DB 9?
Answer: It makes no difference, select only in program corresponding COM-port. USUALLY DB25 - COM2, DB9 - COM1

Question: Is cable connection direct or null-modem?
Answer: Everything depends on your device cutoff point. Usually it is necessary to use null-modem cable, in which signals are moved apart in this way:

<table>
<thead>
<tr>
<th>Device</th>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXD</td>
<td>TXD</td>
</tr>
<tr>
<td>TXD</td>
<td>RXD</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

if device uses special signals DTR and others and you don't want to use hardware data transmit control, at device side connect 7 and 8 contacts of DB9 cutoff point or analogous DB25 cutoff point signals.

More hardware tips and articles you can found on our site http://www.aggsoft.com.

Question: Is data receive becomes at once after program start or data receive must be started?
Answer: Everything depends on your device type, usually in device settings is selected to echo view data to COM port. If your device doesn't support this mode, write what initialization string must be sent to read out data, and we add this possibility to the program.