1100011
0011100011

11{0011010
Emoon

The MODBUS RTU/ASCII, MODBUS/TCP plugin
PRINTED MANUAL

© 1999-2022 AGG Software

MODBUS RTU/ASCII, MODBUS/TCP plugin

© 1999-2022 AGG Software

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: 10/24/2022

Contents |

Table of Contents

Part 1
Part 2
Part 3

Part 4

Part 5
1

N o o~ WN

Introduction 1
System requirements 1
Installing MODBUS RTU/ASCII,

MODBUS/TCP 2
Glossary 3
User Manual 3
= = 0 LU= o PSPPI 3
ReQUESE MEINOMA .. et 6
Cron tIMe FOIMAL ..o et e et et e et e e e e ean s 7
(D= U= B o F= U 1= (TP 8
Custom formulas for reSPONSE ITEIMS ...iiiiiii e 9
MODBUS SIQVE MO ...iieiiiiii ettt et e e e e e et e et e e e eneeens 10
MODBUS PASSIVE MOUE ..ouiiiiiiieii e e et e e e e e e e e et e e e e et e et e et e aaeeanaeans 12

© 1999-2022 AGG Software

1 MODBUS RTU/ASCII, MODBUS/TCP plugin

1 Introduction

MODBUS is a serial communications protocol for use with programmable logic controllers (PLCs).
Simple and robust, it has since become a de facto standard communication protocol, and it is how a
commonly available means of connecting industrial electronic devices.

Our MODBUS RTU/ASCII and MODBUS TCP plugin can work in different modes:

1. MODBUS master - the plugin sends MODBUS requests and processes the responses. In this
mode, the program operates in the Master mode. You should know all request parameters and
describe all expected response items.

2. MODBUS [Slawe] - the program acts as a MODBUS slave device and sends responses from
another MODBUS master PLC or device. This mode is helpful if you need to send data from a
PLC to a host computer at any time using the "Write" request.

3. MODBUS [Passiwe] - the program processes all requests and responses of other devices
communicating over an RS485 bus and then exports decoded data.

This module has the following features:

Can send valid data requests to any MODBUS-compatible device.

Can send requests with all major MODBUS functions.

Calculates and verifies checksum for all data packets.

Can request bytes, word, double words, and single registers, bits, interpret a sequence of bytes as
strings.

Can poll several MODBUS devices by a custom interval.

e Can flexibly parse all received data packets and extract register's values.

2 System requirements
The following requirements must be met for "MODBUS RTU/ASCIl, MODBUS/TCP" to be installed:

Operating system: Windows 2000 SP4 and abowe, including both x86 and x64 workstations and
seners. The latest senice pack for the corresponding OS is required.

Free disk space: Not less than 5 MB of free disk space is recommended.

Special access requirements: You should log on as a user with Administrator rights in order to
install this module.

The main application (core) must be installed, for example, Advanced Serial Data Logger.
Notes for Microsoft Vista and above:

Since our software saves data to the registry and installs to the Program Files folder, the following
requirements must be met:

1. You need Administrator rights to run and install our software
2. The shortcut icon of our software will be located on the desktop;
3. Windows Vista will ask for your confirmation to continue the installation.

© 1999-2022 AGG Software

System requirements 2

NOTE: You can configure the user account only once in order not to see the above dialog box any
more. Search Google for the solution to this problem.

3 Installing MODBUS RTU/ASCII, MODBUS/TCP

Close the main application (for example, Advanced Serial Data Logger) if it iS running;

Copy the program to your hard drive;

Run the module installation file with a double click on the file name in Windows Explorer;
Follow the instructions of the installation software. Usually, it is enough just to click the "Next"
button seweral times;

5. Start the main application. The name of the module will appear on the "Modules” tab of the
"Settings" window if it is successfully installed.

el N

If the module is compatible with the program, its name and version will be displayed in the module
list. You can see examples of installed modules on fig.1-2. Some types of modules require additional
configuration. To do it, just select a module from the list and click the "Setup" button next to the list.
The configuration of the module is described below.

You can see some types of modules on the "Log file" tab. To configure such a module, you should
select it from the "File type" list and click the "Advanced" button.

Configuration options ? X

comport | Query Parse Filter

LTz [rata query module
Other {ha:IDBLIS RTU [modbus. dil) P Setup
Modules Palzer module 2
MODBUS BT [rmodbus. dll] e I Setup
[] Parsing and exparting far data sent
Quelgﬁ'tzrarse Farzing and exporting for data received

Select data filter modules

M odule name Wersion
]

Data export

P

Events handling

Up Do Help Setup

o | (o]

© 1999-2022 AGG Software

MODBUS RTU/ASCII, MODBUS/TCP plugin

4

Fig. 1. Example of installed module

Glossary

Main program - it is the main executable of the application, for example, Advanced Serial Data
Logger and asdlog.exe. It allows you to create several configurations with different settings and use

different plugins.

Plugin - it is the additional plugin module for the main program. The plugin module extends the
functionality of the main program.

Parser - it is the plugin module that processes the data flow, singling out data packets from it, and
then variables from data packets. These variables are used in data export modules after that.

Core - see "Main program.”

User Manual

Data query

Click "Actions - Add new request” to add a new item. The dialog window will be shown (fig. 2). Enter
a request description containing any characters and click the "OK" button.

Enter your description >

Enter your description

| M e item

Carcel

Fig. 2. Name dialog

A new MODBUS request will appear in the requests tree (fig. 3). Each MODBUS request has a few
important options:

e Device address - it is the address of your MODBUS device in the RS232 or RS485 network. By
the MODBUS protocol specification, this address can be from 0 to 255. If you specify 0 as a
device address, then all devices in the network should answer this request. If you poll several
identical devices on the same bus, you can specify all addresses in one request, like 1,2,3,4.

e Function - the MODBUS protocol function number. Usually, this value is 3 for reading holding
registers or 4 for reading input registers.

o Data address - is the address of the first read register in the device memory.

0 Address - selecting this option, you should specify the full memory address, including the
function code like 40001 for an input register.

o First register - it's a register offset. This value is zero-based. If you want to read a register
with the address 40100, you should specify 99 in this field.

© 1999-2022 AGG Software

User Manual 4

e Registers to read - specify the number of consecutive registers in the device memory.

e Request timeout - is the time interval for which the program sends a request to a MODBUS
device. After reaching the timeout limit, the program will automatically cancel the current
request and execute the next request in the queue. The timeout value depends on the network
on which master (program) and slave (device) is running. If the network is slow, then the timeout
value should be larger, and if the network is fast, the timeout value can be smaller.

e Export data for all requests at once - you should activate this option if you read multiple
values from a device in several requests and want to export it in one row to Excel or a
database. In other words, this option groups data from requests with similar polling intervals and
exports it simultaneously.

© 1999-2022 AGG Software

MODBUS RTU/ASCII, MODBUS/TCP plugin

MODEUS RTU 4.0.78.917

Request: queue
Froperty Y alue
= Request #1

Send reque

Device address 1
Function 3
= Data address

() Address [e.g. 480

(®) First register [e.g. 0000

Offzet 1
Fegizters to read g
Request timeaut [mz] 1500

= Request method
() Onee, on the program startup

(® Paliing
Intereal [mz) RO0a
Interval unitz Millizecond

()4t specified time
() Time using Unix Cron schedule

(I Ewvent

= Rezponse items
= Yoltage Ya-n [¥]

Mame WVOLTAGE _Wa_M
Offzet 0
Count 1

[]&yppend counter ta name

Jpr «| || Export data for all requests for one device at once

[] Export data for all requests at once

inimal interval between data packets [msz]
o

Fig. 3. MODBUS request

© 1999-2022 AGG Software

5.2

User Manual 6

Request method
The plugin can send requests in the following mode:
Once, on program startup - the program will send a request once when the program starts.

Polling - the program will send a request periodically based on an interval specified. The interval
between requests depends on the network on which master (program) and slave (device) is running. If
the network is slow, then the time for each request will be larger and vice versa. Because the
program executes all requests in the queue one by one, the time between requests depends on the
number of requests in the queue.

At the specified time - the time of the day using the 24hr format (e.g., 18:00:00). You may specify
several time points separated by a semicolon (e.g. 11:00:00;11:20:00;11:40:00).

Time, using Unix Cron schedule - a flexible schedule format that allows sending requests
periodically or at the specified time. You can find detailed information about this format and see
examples in the "Cron time format" section. The default is 0 0 12 * * *, which means "every week,
every day at 12:00:00".

Event - the program executes the corresponding request when the plugin receives an external event.
These events can be generated by our other plugins, like "Event generator," "Script execute,"
"Expressions,"

- Hequest method
(") Once, on the program startup

(®) Palling
[nterval [ms) 10000
[nterval unitz Millizecond

()AL specified time
() Time uzing Unix Cron schedule

(JEvent

Fig. 4. Request methods

If you have added several requests to the queue, you can mowve them up or down. To do it, select a
request, click the "Action" button, and select an action ("Mowve up" or "Mowve down").

You can also click this button to change a request's description or remowve a request from the queue.

You can also perform the same actions by using the context menu that pops up when you right-click
items in the request tree.

© 1999-2022 AGG Software

7 MODBUS RTU/ASCII, MODBUS/TCP plugin

5.3 Crontime format

The CRON format is a simple yet powerful way to describe time and operation periodicity. The
traditional (inherited from the Unix world) CRON format consists of five fields separated with spaces:

<Second> <Minutes> <Hours> <Month days> <Months> <Weekdays>

Any of the five fields can contain the * (asterisk) character as its value. It stands for the entire range
of possible values. For example, every minute, every hour and so on. In the first four fields, you can
also use the proprietary "?" (w/o quotes) character. See its description below.

Any field can contain a list of comma-separated values (for example, 1,3,7) or an interval (subrange)
of values defined by a hyphen (for example, 1-5).

You can use the / character after the asterisk (*) or after an intenval to specify the value increment.
For example, you can use 0-23/2 in the "Hours" field to specify that the operation should be carried
out every two hours (old version analog: 0,2,4,6,8,10,12,14,16,18,20,22). The value */4 in the
"Minutes" field means that the operations must be carried out every four minutes. 1-30/3 is the same
as 1,4,7,10,13,16,19,22,25,28.

You can use three-word abbreviations in the "Months" (Jan, Feb, ..., Dec) and "Weekdays" (Mon,
Tue, ..., Sun) fields instead of numbers.

Examples

Note: the <Second> field equal 0 in all examples

Format Description

ko Rk x every minute

592331125 one minute before the end of the year if the last
day in the year is Friday

59 23 31 Dec Fri one minute before the end of the year if the last
day in the year is Friday (one more variant)

451776 * ewvery year on the 7th of June at 17:45

0,15,30,45 0,6,12,18 1,15,31 * 1-5 * 00:00, 00:15, 00:30, 00:45, 06:00, 06:15, 06:30,
06:45, 12:00, 12:15, 12:30, 12:45, 18:00, 18:15,
18:30, 18:45, if it is the 1st, 15th or 31st of any
month and only on workdays

*/15 */6 1,15,31 * 1-5 00:00, 00:15, 00:30, 00:45, 06:00, 06:15, 06:30,
06:45, 12:00, 12:15, 12:30, 12:45, 18:00, 18:15,
18:30, 18:45, if it is the 1st, 15th or 31st of any
month and only on workdays (one more variant)

012 **1-5 (0 12 * * Mon-Fri) at noon on workdays

**%135,7,911* every minute in January, March, May, July,
September, and November

1,2,3,5,20-25,30-35,59 23 31 12 * on the last day in the year at 23:01, 23:02, 23:03,

23:05, 23:20, 23:21, 23:22, 23:23, 23:24, 23:25,
23:30, 23:31, 23:32, 23:33, 23:34, 23:35, 23:59

© 1999-2022 AGG Software

User Manual 8

091-7*1 on the first Monday of every month at 9 in the
morning

001** at midnight on the 1st of every month

*0-11** every minute till noon

*x*k123* every minute in January, February, and March

* ** Jan,Feb,Mar * every minute in January, February, and March

00**x* ewvery day at midnight

00**3 every Wednesday at midnight

You can use the proprietary "?" character in the first four fields of the CRON format. It stands for the
start time, i.e., the question mark will be replaced with the start time during the field processing:
minute for the minute field, hour for the "Hours" field, month day for the month day field, and month
for the month field.

For example, if you specify:

DDk Kk K

The task will be run at the moment of startup and will continue being run simultaneously (if the user
does not restart the program again, of course) — the question marks are replaced with the time the
program was started at. For example, if you start the program at 8:25, the questions marks will be
replaced like this:

258*7\'**

Here are some more examples:

??7?7?*-run _only_ at startup;

e ?****_ryn at startup (for example, at 10:15) and continue being run in exactly one hour: at
11:15, 12:15, 13:15 and so on;

e *?***_ryn every minute during the startup hour;

*/5 ? * ** - run on the next day (if CRON is not restarted) at the same hour every minute and so on

every day, once in five minutes, during the startup hour.

5.4 Data parser

All data export modules use parser variables containing parsed (decoded) values. Our MODBUS
RTU/ASCIl, MODBUS/TCP picks out significant data blocks (data packets) from the common data
flow, analyzes the extracted data packet, and checks its integrity using CRC (cyclical redundancy
check).

All parser items are assigned with a corresponding request in the queue. You can define one or more
parser items (variables) in one request.

You can add a new parser item (variable) to the request by clicking "Actions - Add response item."
Before, you should select a caption of the corresponding request. A new parser item (variable) will
appear in the "Response items"” group (fig. 5).

© 1999-2022 AGG Software

9 MODBUS RTU/ASCII, MODBUS/TCP plugin

= Response items
= Yoltage Ya-n [¥]

M arne WOLTAGE Wa_N
Offzet 0
Count 1

[]&ppend counter to name

D ata type Single precizion float, 32 bit

[]Little endian, otherwize Big endian [numbers only]

[JUnzigned, otherwize Signed [decimal numbers anly]

Swapped [most significant register first] [32 and 64 bit numbers only)
Fig. 5. Data parser items.

Each response item has a few important options:

e Name - the of the parser variable. This name you'l bind with fields in data publication modules.

o Offset - the device can respond few data bytes, but you need only some of them. The "Offset"
field contains a byte offset of the data from the beginning of the data block. This value is zero-
based. If the first byte of your value is located at the beginning of the data block, then this value
should be 0. You can specify -1 here. Then the program will automatically calculate the value
offset. Please, note, the data block does not include a data packet header (address and data
size).

e Count - is the number of values (nor bytes) with the same parameters (data type and default
value), located one after another since the offset. If you specify more than one here, then a value
index (1, 2, 3, etc.) will be added to the parser item name. Please note that it is a count of
values, not bytes or registers (one value can allocate one or more bytes or registers).

o Data type - is the data type of the value. Each value can utilize one (for the "Byte" data type) or
more bytes.

o Default value - this value will be used if the parser can't parser data block for this parser item.
For example, if the data block has a small size or offset is too large.

5.5 Custom formulas for response items

You can execute basic math calculations on read values or bytes. The most expressions were
copied from the Expressions plugin, where you can find the full list of supported functions.

Special variables

{VALUE} - it is a special placeholder of the current response item value. This value is already
decoded to the configured data type.

If you select "Custom formula" in the "Data type" field for a response item, the plugin also uses the
following variable:

BYTEXxxSyy - these variables contain the selected number of bytes from a response data. The
response data does not include MODBUS packet header and checksum (device address, function
code, etc.).

XX - a hexadecimal value of a zero-based offset of the first byte.

© 1999-2022 AGG Software

User Manual 10

yy - a hexadecimal value of a number of bytes.

Examples

BcdToStr(BYTEO0SO04) - converts data bytes (0-3) from BCD coding to a string.
BcdToInt(BYTEO00SO02) * IntPower(10, SmallintToStrBE(BYTE02S02)) - conwerts data bytes (0-1)
from BCD coding to

decimal and to raises to the power of values from bytes 2 and 3.

{VALUE} * (VTRFwWM)/10 - multiplies the current response item's value to another value extracted
from the same response before.

{VALUE} * K_RMS_FACTOR - another similar example.

56 MODBUS slave mode

In this mode, the program acts as a MODBUS slave device and serves requests from a MODBUS
master. The plugin supports all major MODBUS function codes: 1,2,3,4,5,6,15,16. The plugin does
not send data without a valid request from a MODBUS master.

This mode is useful when a PLC initiates a connection and wants to send something to a host
computer using the "WRITE" command like "Write Single Coil," "Write Single Register," "Write
Multiple Coils," or "Write Multiple registers,"

The configuration window (fig. 6) is slightly different in this mode. For example, you do not need to
configure data polling parameters.

© 1999-2022 AGG Software

11

MODBUS RTU/ASCII, MODBUS/TCP plugin

MODBUS RTU [Slave] 4.0.78.917 O >
Request: queue
Froperty Y alue
[+] Auctive
Device address 1.2.3.4
Funchion]

= Data address
() Address [e.g. 480
(®) First register [e.g. 0000

Offset 1]
Fegizters to read 2048
=l Responsze items

= Item #1

Mame WALLE

Offzet 1]

Count 1

[]&ppend counter bo name

[ata type Single precizion float, 32 bit

[]Little endian, otherwize Big endian [numbers only]

IInzigned, othenwize Signed [decimal numbers only)

Swapped [most significant register first] (32 and 64 bit numbers only)

Default value 0
Scale [numbers anly] 1
Action hd

o | []

Fig. 6. MODBUS slave emulation

Active - if this option is checked, the request parameters are active, and the plugin emulates the
slave device described in the parameters below.

Device address - it is the address of an emulated slave device. You can specify several addresses
in one request, like 1,2,3,4. The plugin does not respond to requests addressed to other addresses.

Function - the function code allows you to define the supported memory areas in the emulated slave
device.

0 - Emulate all memory areas.

© 1999-2022 AGG Software

User Manual 12

1 - Caoils.

2 - Discrete inputs.
3 - Holding registers.
4 - Input registers.

You can also combine function code like 1,3 or 3,4

Data address and Registers to read options allow you to define a range of an emulated memory
area in the slave device. You can use the following values to emulate the entire memory space of
65535 registers.

Offset: 0
Register to read: 65535

Please note, a larger number of registers require more computer memory. It becomes significant if
you emulate many slave devices.

If a master device tries to access data from unallocated memory space, the slave returns an
exception code to the master.

Response items - this list allows you to define a custom name and a data type for some values in
the slave's memory. The Offset parameter defines an absolute offset in the address space for the
named value. Other parameters have the same meaning as described before.

If this list is empty or omits some values, the plugin exports all unnamed values as unsigned 16-bit
decimals with an autogenerated name like "VNNNNN" or "BNNNNN."

V - it is a prefix for registers
B - it is a prefix for coils and discrete inputs.

NNNNN - is an absolute offset of a value in the address space in the decimal format.

5.7 MODBUS passive mode

In this mode, the program processes all MODBUS read-write requests and responses and exports
data values. If you use the "Spy" mode in our data logger software, you must enable parsing for sent
and received data (fig. 7). The plugin supports all major MODBUS function codes: 1,2,3,4,5,6,15,16.
The plugin does not send any data.

© 1999-2022 AGG Software

13

MODBUS RTU/ASCII, MODBUS/TCP plugin

Configuration options ? pod

comport | Query Parse Filter

i Drata query module

Other r\ine e Setup
Modules Pa¥zer module 3

FMODEUS RTU [Pazsive] [modbus. dil] - l Setup 2

Parzing and exporting for data sent
Parzing and exparting for data received

Query Parse

Filter
Select data filter modules
Madule name Yersion
Data export

¥

Events handling

p Dronan Help Setup

o []

Fig. 7. Data parsing options

This mode helps monitor all data exchange over an RS485 bus and get all data in parallel with
another application or two communicating external devices.

The plugin would only process a response from a MODBUS slave device if the plugin received a valid
request from a MODBUS master before. The interval between a request and a response is lower than
a timeout interval defined in the "Request timeout" parameter.

The configuration window for this mode is shown in figure 8.

© 1999-2022 AGG Software

User Manual

MODBLUS RTU [Passive] 4.0.78.917 O it
Request: queue
Froperty Walue
Active
Device address 1234
Function N

= Data addrezs
() Address [e.g. 4300
(®) First register [e.g. 0000

Offset 1]
Feqgisters to read BR535
= Rezponse items

= Item $#1

Mame WalLLE

Offset 1]

Count 1

[]4ppend counter to name

Drata type Single precizion float, 32 bit

[Little endian, otherwize Big endian [numbers only]

Inzigned, othenmize Signed [decimal numbers only)

Swapped [most significant register first] (32 and 64 bit numbers anly]

Default value 0
Scale [numbers anly] 1
Achion - Ewport changed data anly

Request timeout [mz) 200 =

o | (oo]

Fig. 8. MODBUS passive mode settings

Request and response settings are identical to the "MODBUS slave" mode.

The plugin can export data from reading and writing requests. If a master intensively polls a slave
device but data changes rarely, you can enable the "Export changed values only" option, and the
plugin will ignore repeated read or write requests.

© 1999-2022 AGG Software

	Introduction
	System requirements
	Installing MODBUS RTU/ASCII, MODBUS/TCP
	Glossary
	User Manual
	Data query
	Request method
	Cron time format
	Data parser
	Custom formulas for response items
	MODBUS slave mode
	MODBUS passive mode

