
©2018-2019 AGG Software

The Plugin proxy plugin

PRINTED MANUAL

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: 7/17/2019

Plugin proxy plugin

©2018-2019 AGG Software

Publisher

AGG Software

Production

©2018-2019 AGG Software
http://www.aggsoft.com

IContents

©2018-2019 AGG Software

Table of Contents

Part 1 Introduction 1

Part 2 System requirements 1

Part 3 Installing Plugin proxy 1

Part 4 Glossary 2

Part 5 Setup 3

Part 6 API 3

Part 7 Error codes 6

Part 8 Module API 7

Part 9 Module parameters 11

Part 10 Buffer 12

Part 11 List of values 13

1 Plugin proxy plugin

©2018-2019 AGG Software

1 Introduction

The "Plugin proxy" module is the adapter between the main program and modules written in other
programming languages. Unlike "Python plugin" module, which also provides access to API, this API
interface has more features, but developing it is also more complicated.

The module uploads the DLL developed by you and calls API functions from it.

After installation, in the module folder, you can find an example for Visual C++ 2015 that implements
the functions of data filter, data parser, and data export modules.

2 System requirements

The following requirements must be met for "Plugin proxy" to be installed:

Operating system: Windows 2000 SP4 and above, including both x86 and x64 workstations and
servers. A latest service pack for the corresponding OS is required.
Free disk space: Not less than 5 MB of free disk space is recommended.
Special access requirements: You should log on as a user with Administrator rights in order to
install this module.

The main application (core) must be installed, for example, Advanced Serial Data Logger.

Notes for Microsoft Vista and above:

Since our software saves data to the registry and installs to the Program Files folder, the following
requirements must be met:

1. You need Administrator rights to run and install our software
2. The shortcut icon of our software will be located on the desktop;
3. Windows Vista will ask for your confirmation to continue the installation.

NOTE: You can configure the user account only once in order not to see the above dialog box any
more. Search Google for the solution of this problem.

3 Installing Plugin proxy

1. Close the main application (for example, Advanced Serial Data Logger) if it is running;
2. Copy the program to your hard drive;
3. Run the module installation file with a double click on the file name in Windows Explorer;
4. Follow the instructions of the installation software. Usually, it is enough just to click the "Next"

button several times;
5. Start the main application. The name of the module will appear on the "Modules" tab of the

"Settings" window if it is successfully installed.

2Installing Plugin proxy

©2018-2019 AGG Software

If the module is compatible with the program, its name and version will be displayed in the module
list. You can see examples of installed modules on fig.1-2. Some types of modules require additional
configuration. To do it, just select a module from the list and click the "Setup" button next to the list.
The configuration of the module is described below.

You can see some types of modules on the "Log file" tab. To configure such a module, you should
select it from the "File type" list and click the "Advanced" button.

Fig.1. Example of installed module

4 Glossary

Main program – the main executable of the application. For example: Advanced Serial Data Logger
and asdlog.exe. It allows creating several configuration. Each configuration may use many plugins.

Plug-in - the additional plugin module for the main program. The plugin module extend the
functionality of the main program.

Parser – the plugin module that processes the data flow, singling out data packets from it, and then
variables from data packets. These variables are used in data export modules after that.

3 Plugin proxy plugin

©2018-2019 AGG Software

Core - see "Main program".

5 Setup

Module "Plugin proxy" does not have its own settings window. When you click the "Settings" button
in the main program window, a call through API is redirected to your developed module. Your module
may not have dialog boxes at all.

Follow these steps to connect your module:

1. Based on the example, you need to create a DLL with your implementation of the module.
2. Place your developed module in the folder next to pluginproxy.dll (in the program

folder\plugins\pluginproxy).

6 API

After installation, in the module folder, you can find an example for Visual C ++ 2015 that
implements the functions of data filter, data parser, and data export modules. You can use one of the
examples as a prototype.

Note:

1. When developing your module, please keep in mind that all API functions can be called from
different threads (excluding aggPluginShowOptionsDialog). Therefore, all code must be thread-
safe.

2. A DLL of your module can be loaded in different configurations with different settings.
3. Do not let exceptions leave your DLL. Everyone must use try-catch constructions.

The following functions may be present in the code of your module.

aggPluginCreate

void __stdcall aggPluginCreate(_di_IaggPluginW Sender)

Sender - specifies API interface module. This parameter is also present in other API calls.

The main program calls this function when it creates a new module instance in one of configurations.
Here you can initialize data structures of your module, as well as specify the following parameters:

1. Module name that will be displayed in the list of modules.
2. One or more module types that are implemented in this DLL. Depending on the type of module, it

will appear in the appropriate list in the main window of the program (some functions are called in
the context of a certain type of module).

The function that is called next is aggPluginLoad.

4API

©2018-2019 AGG Software

aggPluginLoad

void __stdcall aggPluginLoad(_di_IaggPluginW Sender, const PPluginCallRec pCallRec, int &Result)

pCallRec - module call parameters.

The main program calls this function as soon as the module has been created. Calling this function
means that the module is supposed to read the settings from data storage (if required) and start
working.

Result - the result of the module loading function. If the module returns mrtSuccess, that means the
main program considers that the module has been loaded successfully and is ready to proceed. If a
different result is returned, the main program will report problems and stop the execution of the
module.

aggPluginUnload

void __stdcall aggPluginUnload(_di_IaggPluginW Sender, const PPluginCallRec pCallRec, int &Result)

Result - the result of the module unloading function.

The main program calls this function before removing the module instance. Before returning from this
function, the module must stop all processes, all long-running operations, and save the data.

aggPluginDestroy

void __stdcall aggPluginDestroy(_di_IaggPluginW Sender)

The main program calls this function before removing the module instance. Immediately after this
call, DLL may be unloaded from the data memory. Therefore, to avoid memory leaks, the module
must delete all created objects in the data memory.

aggPluginLoadSettingsNow

void __stdcall aggPluginLoadSettingsNow(_di_IaggPluginW Sender)

The main program can call this function in the following ways:

 1. After calling aggPluginShowOptionsDialog in one of module instance and changing settings.
 2. After restoring a copy of configuration from a file.

When calling this function, the module must read all saved settings, and, if necessary, apply them in
the working module. When creating a module, you must take into account that settings may be
missing in the data repository. In this case, default settings should be used.

aggPluginSaveSettingsNow

5 Plugin proxy plugin

©2018-2019 AGG Software

void __stdcall aggPluginSaveSettingsNow(_di_IaggPluginW Sender)

The main program can call this function when creating a backup copy of the configuration. When
calling this function, the module must save all settings to data storage (registry or INI configuration
file).

aggPluginShowOptionsDialog

void __stdcall aggPluginShowOptionsDialog(_di_IaggPluginW Sender, const PPluginCallRec pCallRec, bool &Success)

The main program calls this function when the user clicks the "Configure" button in the main program
settings window. The module can display a window with settings or immediately return control to the
main program.

Success - if the function returns TRUE, that means the main program assumes that settings have
been changed, and they must be loaded in other module instances. Therefore, a call to
aggPluginLoadSettingsNow in other module instances may follow. Modified settings in this module
instance must be applied before exiting this function. The main program expects the module
configuration window to exist only while calling this function.

aggPluginEvent

void __stdcall aggPluginEvent(_di_IaggPluginW Sender, const PWideChar Event, const PPluginCallRec pCallRec, int &Result)

Event – the identifier of the "PORT-CLOSE" event.

Result - if the function has handled the event, it must return mrtSuccess.

The main program calls this function when the module "subscribed" to receive events during the
module creation step, and such an event was generated in the main program or another module.

aggPluginExecuteCustomCommand

void __stdcall aggPluginExecuteCustomCommand(_di_IaggPluginW Sender, const PWideChar Command, const PPluginCallRec pCallRec, int &Result)

Command - identifier of command type "MY-COMMAND."

Result - if the function has handled the event, it must return mrtSuccess.

When the module is created, it can declare the availability of its commands. Own commands appear
as menu items in the program main window. The main program calls this function when the user
clicks on the corresponding menu item.

aggPluginSetParserItems

void __stdcall aggPluginSetParserItems(_di_IaggPluginW Sender)

6API

©2018-2019 AGG Software

The main program calls this function when updating the list of parser variables. Typically, the function
call occurs before calling aggPluginShowOptionsDialog and is applicable only for the modules of the
type "Filter" (mttFilter), "Data export" (mttDataExport), "Events handling" (mttEventsHandling).

aggPluginProcessData

void __stdcall aggPluginProcessData(_di_IaggPluginW Sender, const PPluginCallRec pCallRec, int &Result)

The main program calls this function when the module must process any data. The function is
applicable only for modules "Data query" (mttDataQuery), "Parser" (mttDataParser),
"Filter" (mttFilter), "Data export" (mttDataExport), "Events handling" (mttEventsHandling).

If the function call is executed for a parser type module, then incoming data in pCallRec contain a
pointer to the block of recently received data. In this case, all incoming data are additionally saved in
a special buffer. In all other cases, incoming data contain a pointer to the list of values.

Result - if the function has handled the data, it must return mrtSuccess.

aggPluginGetData

void __stdcall aggPluginGetData(_di_IaggPluginW Sender, const PPluginCallRec pCallRec, int &Result)

The main program calls this function when the parser module reports the presence of “pending” data.
For example, such data may appear when processing timeout data.

aggPluginStateChanged

void __stdcall aggPluginStateChanged(_di_IaggPluginW Sender, const DWORD ModuleTypes)

The main program calls this function when the module is supposed to initiate one of executable
functions. For example, if the module can operate as a data query module and a parser, but the user
has selected the module only in the "Parser" list.

ModuleTypes - bitmask of the types of modules that should be enabled.

A module can additionally query the module parameter "ModuleEnabled" to get the mask of all
enabled module types.

7 Error codes

While executing the functions an API module can return the following error codes:

mrtSuccess = 0. Successfull completion. No errors.
mrtInvalidParameter = -1. Invalid parameter.
mrtNotSupported = -2. Not supported.
mrtException = -3. Unhandled exception error.
mrtNotInitialized = -4. Module not initialized.

7 Plugin proxy plugin

©2018-2019 AGG Software

mrtError = -5. Other errors.

Error codes are declared in header file "aggPluginModule.h".

8 Module API

The file "aggPluginModule.h" contains data types and class "CaggPlugin" in C ++ programming
language which enables working with API modules.

Types of modules

mttDataQuery = 0x01. Data query module.
mttDataParser = 0x02. Data (handling) parsing module.
mttDataExport = 0x04. Data export module.
mttEventsHandling = 0x08. Events handling module.
mttLogging = 0x10. Data logging module. Available only in Data Logger Suite.
mttFilter = 0x20. Data filter module.
mttDeviceLayer = 0x40. Data source module. Not available via API.
mttMenuExt = 0x80. Program main menu items extension module (user commands).

Input or output data

Data type:

TDataRecType : unsigned char {
pdtNone, // no data.
pdtParamList, // list of values is passed to pParams.
pdtBuffer, // pointer to data buffer in pData.
pdtObject, // random object in pObject (not used in API).
pdtString, // string of ANSI ASCII characters, pointer which is passed to pStr.
pdtDWORD, // simple numeric value that is passed to dwData.
pdtCommand, // command, the code of which is passed to dwData (see below). Is passed

from the module to the data source. Not all data sources support commands.
pdtNotify, // notification, the code of which is passed to dwData (see below). Is passed from

data source to modules. Not all data sources pass notifications.
pdtParamListObj // object with a list of parameters (obsolescent).

};

Commands and notifications:

 pdtCommand_ClientConnect = 0x0101; // client connected (IP data source => module).
 pdtCommand_ClientDisconnect = 0x0102; // client disconnected (must be disconnected) (IP data
source <=> module).
 pdtCommand_TryRestoreConnection = 0x0103; // restore connection (data source <= module).
 pdtCommand_ClientBlock = 0x0104; // client block (IP data source <= module).
 pdtCommand_BufferCleanupEnable = $0105; // set an indication that the parser does not want to
receive and handle data from the client that has already disconnected (main program <= module-
parser).
 pdtCommand_BufferCleanupDisable = $ 0106; // remove indication (main program <= module-
parser).

8Module API

©2018-2019 AGG Software

 pdtCommand_GetQueueSize = $0201; // get the amount of data in the process queue (data source
=> main program).

struct TDataRec
{

DWORD dwTag; // undefined tag.
DWORD dwDataSize; // size of input data. Can be zero. It only has value for data type

pdtBuffer or pdtString.

TDataRecType bDataType;
union
{

struct
{

DWORD dwData;
};
struct
{

char *pStr;
};
struct
{

void* pObject;
};
struct
{

TaggParamsList* pParamsObj;
};
struct
{

void *pData;
};
struct
{

_di_IaggParamsListA* pParams;
};

};
};

Parameters of API function calls

struct TPluginCallRec
{

DWORD dwSize; // size of data structure TPluginCallRec
Byte bVersion; // data structure version
DWORD dwModuleHandle; // unique ID of module.
DWORD dwModuleIndex; // unique ID of module instance
DwDataSource DWORD; // unique ID of data source

9 Plugin proxy plugin

©2018-2019 AGG Software

DWORD dwClientID; // unique ID of client in the data source. Jointly, dwDataSource and
dwClientID uniquely identify source of data.

TModuleTypes aCallModuleType; // mask of module types in the context of which API
function is called. Normally, only one module type is specified.

TaggParamsList* aParameters_; // pointer to class - list of additional call parameters.
Obsolescent. Not in use.

TDataRec aDataIn; // input data.
TDataRec aDataOut; // output data.
unsigned char aClientName[50]; // data source name for dwClientID. Can be empty and filled

with zeros.
_di_IaggParamsListA aParameters; // interface for calling list of additional call parameters.

Read only.
};

typedef TPluginCallRec* PPluginCallRec;

Please note that all unique identifiers may change when the main program is restarted.

API module functions

In the case of the successful execution of any functions below, the result is 0 (S_OK).

HRESULT __stdcall Log(const byte Level, const BSTR str)

The function displays the message str in the program message log. Level can be the following: 0 -
error, 1 - warning, 2 - information.

HRESULT __stdcall GetModuleParameter(const BSTR AName, OleVariant* AResult)

The function returns еру module parameter value with the AName name.

HRESULT __stdcall SetModuleParameter(const BSTR AName, const OleVariant &Value, bool* AResult)

The function changes the module parameter value with AName to Value. Note that only a limited list
of parameters is available for modification.

HRESULT __stdcall NewData(_di_IaggParamsListW* List)

The function returns a pointer to the interface of "new" parameters list. It is only used in modules of
type mttDataParser and mttFilter. The parameters extracted from the data packet are added to this
list by the parser. Values generated by data filtering module are also added to the list.

HRESULT __stdcall PluginStorageAdd(const BSTR AId, const PVOID AData)
HRESULT __stdcall PluginStorageGet(const BSTR AId, PVOID* AData)
HRESULT __stdcall PluginStorageDel(const BSTR AId, PVOID* AData)

10Module API

©2018-2019 AGG Software

These functions allow us to work with the data storage of the module. The data storage is individual
for each module instance. The data in the data store are saved between API functions calls. It is up
to the module itself to delete data from the storage.

AId - the identifier of the value in a data store.

AData - a pointer to a data.

HRESULT __stdcall GetParserItems(OleVariant* AResult)

The function returns a list of parser variables in the form of a character set (BSTR), divided by CR +
LF characters into several strings. Each string contains a description of one variable of the parser in
the form:

DESCRIPTION|NAME|DATA_TYPE|DEFAULT_VALUE

DESCRIPTION - user-defined textual description of a parser variable.
NAME - the name of parser variable (usually, only letters of Latin alphabet A-Z, numbers and
underscore).
DATA_TYPE - data type, if it is specified in the parser. If it is not, the data type is "String." Possible
data types: String, Memo, Bytes, Blob, Boolean, Float, Smallint, Word, Integer, Date, Time,
DateTime, DWord, Byte, Shortint, Int64, Currency.
DAFAULT_VALUE - default value if it is specified in the parser.

HRESULT __stdcall GetConfigs(OleVariant* AResult)

The function returns a list of data sources that are specified in the configuration in which the module
can be loaded. It is returned in the form of a character set (BSTR), divided by CR + LF characters
into several strings. Each string contains a description of one data source in the form:

NAME<TAB>DATA_SOURCE_ID

NAME - name of data source.
<TAB> - tab character ASCII (0x09).
DATA_SOURCE_ID - unique identifier of a data source in the form of HEX string. You can convert it
into DWORD number and use in calls.

HRESULT __stdcall SendData(const PPluginCallRec pCallRec, const PBYTE AData, const int ASize, int* AResult)

The function sends a set of bytes to the data source.

Note that not all data sources support data submission.

pCallRec - specifies a data sender and a data receiver. This parameter can be NULL. In this case,
data are sent to all data sources in this configuration.

AData – the pointer to the data buffer.

ASize - the size of the data buffer in bytes.

11 Plugin proxy plugin

©2018-2019 AGG Software

AResult - a result of data submission. Error codes:

>= 0 - successfully sent.
-1 - sending is not supported.
-2 - unknown error.
-3 - sending is disabled.
-4 - invalid parameters.
-5 - no data source found.
-6 - configuration is blocked (loading settings, deleting a configuration, etc.) and data sending is
impossible.
-7 - invalid sender ID (invalid value specified).
-8 - wrong sender ID (not applicable to this configuration).
-9 - module initialization is not complete
-10 - configuration in the module is not completely initialized.
-11 - unhandled exception.
-12 - data source closed (pause has been pressed in the main program window).
-13 - data source temporarily stopped sending data (output data buffer overflow during the connection
process, etc.).
-14 - other, the internal error of the data source module.

HRESULT __stdcall GetArgs(const _di_IaggParamsListW* AArgs)

The function is used to prepare a list of parameters for sending an event or saving a configuration. It
returns a pointer to a list of values that you can fill in and pass as a parameter to the next function.

HRESULT __stdcall SendEvent(const BSTR AEventId, const _di_IaggParamsListW AArgs)

The function submits the AEventId event with parameters AArgs to the main program and other
modules. A list of parameters can be prepared using GetArgs. AArgs can be NULL. The list of
standard events is given in the "Parameters" section.

HRESULT __stdcall LoadSaveConfig(const bool ASave, const _di_IaggParamsListW AArgs)

The function, depending on the ASave argument, either loads or saves in the module configuration
values from AArgs. You can prepare a list of arguments using GetArgs and fill in the necessary
values. The name of the value in the list may contain the character "\". In this case, the name of the
value will be interpreted as the path and name separated by this character.

9 Module parameters

In this section, you can see the list of parameter identifiers with which you can access module
parameters by calling the appropriate API function. The character "[w]" in a parameter description
means that the value can be changed.

ModulePath - (string) the path to the folder where the module file is installed.

ModuleName - (string) the name of the module.

12Module parameters

©2018-2019 AGG Software

ApplicationFullName - (string) the name of the main application.

ModuleRegistryRoot1 - (dword) the registry branch where settings are stored:
HKEY_LOCAL_MACHINE или HKEY_CURRENT_USER

ModuleRegistryRoot2 - (dword) the backup registry branch.

ModuleRegistryPath - (string) the path in the registry where settings are stored.

INIFile - (string) the name of the INI file where settings are stored. If the name is specified, then
settings are not stored in the registry but in a file.

INISectionPrefix - (string) if settings are stored in a file, then the parameter stores the prefix of the INI
section of the settings file for this configuration and module.

DisplayFullVersion - (string) the version of the module.

IsTemporaryLoad - (bool) indicates that the module is temporarily loaded. For example, to edit
settings.

LogTitle - (string) [w] the module title, which is displayed in the log file with program messages
before any message from the module. It may be the same as the module description.

Description - (string) [w] the module description that is displayed in module lists in the main
program.

EventsSupported - (string) [w] a list of events that a module is ready to receive and handle. Identifiers
are separated by commas. By default, this list is empty. Standard events:

LOG-MESSAGE - new text in the program message log.
NEW-LOG-FILE - a new log file with data has been created.
LOG-FILE-DELETE - deletion of the old log file with data.
NEW-DATA-PACKET - a new data packet from the parser.
ERROR-WRITE-FILE - error while writing to log file.
PORT-OPEN - data source is open (started).
PORT-CLOSE - data source is closed.
CONFIG-CHANGE - configuration has been changed by the user.

USER-LOGOOF, USER-LOGON - in service mode, end or beginning of user session.
STOP-SERVICE - in service mode, service stop.

10 Buffer

When the module is operating in parser mode, the API creates a 65 KB input buffer for each data
source and client. All received data are automatically written to this buffer. When the
aggPluginProcessData API function is called, a pointer to the last portion of the received data is
passed to it. Note that this portion of data may not contain the entire data packet. The task of the
parser, after data handling, is to clear this buffer. When the buffer overflows, the old data will be
replaced by new data.

13 Plugin proxy plugin

©2018-2019 AGG Software

The full class code for working with the buffer is given in the file "fifobuffer.h." To get access to the
buffer object, you need to call the class method "CaggPlugin":

CFifoBuffer GetDataSourceBuffer(const PPluginCallRec pCallRec)

CFifoBuffer class object has the following methods and properties that enable interfacing with the
buffer:

Size - returns the number of bytes in the buffer.

Data - returns a pointer to the beginning of the buffer.

void Clear() - Clears the buffer completely.

void Shift(const int ASize) - Removes "ASize" bytes at the beginning of the buffer (shifts the
buffer).

int Find(const PBYTE ASign, const byte ASignSize, const unsigned int Offset = 0)

It searches for byte signature "ASign" of the length "ASingSize" bytes in the buffer, starting from the
Offset. Returns the offset of the found signature or "-1".

11 List of values

File "aggParamLst.h" contains data types and class "CaggParamsList" in the programming language
C++ which enables working with a list of values.

A list of values is a set of items. Each item in the list is an object that has a name and a value. This
list can be divided into one or more virtual strings by a special delimiter element, that has a fixed
name "NEW_ROW."

An object of the class "CaggParamsList" has the following methods and properties.

Clear() - clears the list completely.

Delete(index) - removes an element with index from the list.

CopyFrom(object [, start_index = 0[, end_index = -1]]) - copies the specified number of items
from the object list. Additional start_index and end_index parameters specify the start and end
indexes of items in the source list. If end_index is -1, then all items in the list are copied down to
the end.

ItemByName(name) - returns a list item by its name (string).

ItemIndexByName(name) - returns the index of a list item by its name.

ItemValueByName(name) - returns the value of a list item by its name. A value can be of any
simple type, including Null.

14List of values

©2018-2019 AGG Software

ItemValueByNameDef(name) - returns the value of a list item by its name. If the element with this
name is not found, it returns the default value.

InsertItem(index, name, value) - inserts a new element with name and value into the list, at the
index position. Returns the added item.

SetItem(name, value[, canadd = False]) - changes the value of a list item with name to a new
value. If the additional canadd parameter is True and the value is not in the list, then a new value is
added at the end of the list. Returns the found or new list item.

AddItem(name, value) - adds a new element with name and value at the end of the list. Returns a
new list item.

AddItemCopy(item) - adds a copy of the item at the end of the list. Returns a new list item.

FindRow(item, start_idx, is_row_end_sign) - searches for index of the last element of a string
starting from start index start_idx. Returns True if a string is found (one or more list items after
start_idx). end_idx is a variable whose value returns the index of the last element of the string.
is_row_end_sign is a variable that returns True if end_idx points to a special string separating
element.

Example:

int nStartIdx = 0;
int nEndIdx = 0;
bool bEndRowSign = false;
while (aData.FindRow(nStartIdx, nEndIdx, bEndRowSign))
{

//

// your code here

//

nStartIdx = nEndIdx + 1;
}

NewRow() - adds a new separator element at the end of the list.

Count is a list property that contains the number of items in the list.

Items[index] - the property that allows getting a list item by its index.

List item

Each list item has two properties:

Name – the name of the element (string value).

Value – the value of the element. A value of arbitrary type, which can also be "Null."

	Introduction
	System requirements
	Installing Plugin proxy
	Glossary
	Setup
	API
	Error codes
	Module API
	Module parameters
	Buffer
	List of values

